Global Catastrophic Risks

Updating My Risk Estimate for the Geomagnetic “Big One”

In 2015, I researched and wrote about the risk to industrial society from geomagnetic storms—terrestrial phenomena that, despite their name, originate on the sun. Mild storms give us the ineffable beauty of the Northern Lights, and the Southern Lights too. Severe geomagnetic maelstroms might, some fear, knock out key satellites or cause continent-wide blackouts that would take months to undo.

I concluded that the risk had been exaggerated in the studies that gained the most attention. Still, given the potential stakes and the historical neglect of the problem, the issue deserved more attention from people in science, business, and government.

As I wrapped up my investigation, I tripped on a question of statistical method that I did not have time to fully explore. I have since put more time into the question. I just finalized a working paper about the results and submitted it to a journal. The upshot for the geomagnetic storm investigation is that I have modified my methods for extrapolating storm risks from the historical record. As a result, I have raised my best estimate of the chance of a really big storm, like the storied one of 1859, from 0.33% to 0.70% per decade. And I have expanded my 95% confidence interval for this estimate from 0.0–4.0% to 0.0–11.6% per decade.

More explanation follows.

Differential Technological Development: Some Early Thinking

Note: this post aims to help a particular subset of our audience understand the assumptions behind our work on science philanthropy and global catastrophic risks. Throughout, “we” refers to positions taken by the Open Philanthropy Project as an entity rather than to a consensus of all staff.

Two priorities for the Open Philanthropy Project are our work on science philanthropy and global catastrophic risks. These interests are related because—in addition to greatly advancing civilization’s wealth and prosperity—advances in certain areas of science and technology may be key to exacerbating or addressing what we believe are the largest global catastrophic risks. (For detail on the idea that advances in technology could be a driver, see “ ‘Natural’ GCRs appear to be less harmful in expectation” in this post.) For example, nuclear engineering created the possibility of nuclear war, but also provided a source of energy that does not depend on fossil fuels, making it a potential tool in the fight against climate change. Similarly, future advances in bioengineering, genetic engineering, geoengineering, computer science (including artificial intelligence), nanotechnology, neuroscience, and robotics could have the potential to affect the long-term future of humanity in both positive and negative ways.

Therefore, we’ve been considering the possible consequences of advancing the pace of development of various individual areas of science and technology in order to have more informed opinions about which might be especially promising to speed up and which might create additional risks if accelerated. Following Nick Bostrom, we call this topic “differential technological development.” We believe that our views on this topic will inform our priorities in scientific research, and to a lesser extent, global catastrophic risks. We believe our ability to predict and plan for future factors such as these is highly limited, and we generally favor a default presumption that economic and technological development is positive, but we also think it’s worth putting some effort into understanding the interplay between scientific progress and global catastrophic risks in case any considerations seem strong enough to influence our priorities.

The first question our investigation of differential technological development looked into was the effect of speeding progress toward advanced AI on global catastrophic risk. This post gives our initial take on that question. One idea we sometimes hear is that it would be harmful to speed up the development of artificial intelligence because not enough work has been done to ensure that when very advanced artificial intelligence is created, it will be safe. This problem, it is argued, would be even worse if progress in the field accelerated. However, very advanced artificial intelligence could be a useful tool for overcoming other potential global catastrophic risks. If it comes sooner—and the world manages to avoid the risks that it poses directly—the world will spend less time at risk from these other factors.

Curious about how to compare these two factors, I tried looking at a simple model of the implications of a survey of participants at a 2008 conference on global catastrophic risk organized by the Future of Humanity Institute at Oxford University. I found that speeding up advanced artificial intelligence—according to my simple interpretation of these survey results—could easily result in reduced net exposure to the most extreme global catastrophic risks (e.g., those that could cause human extinction), and that what one believes on this topic is highly sensitive to some very difficult-to-estimate parameters (so that other estimates of those parameters could yield the opposite conclusion). This conclusion seems to be in tension with the view that speeding up artificial intelligence research would increase risk of human extinction on net, so I decided to write up this finding, both to get reactions and to illustrate the general kind of work we’re doing to think through the issue of differential technological development.

Below, I:

  • Describe our simplified model of the consequences of speeding up the development of advanced AI on the risk of human extinction using a survey of participants at a 2008 conference on global catastrophic risk organized by the Future of Humanity Institute at Oxford University.
  • Explain why, in this model, the effect of faster progress on artificial intelligence on the risk of human extinction is very unclear.
  • Describe several of the model’s many limitations, illustrating the challenges involved with this kind of analysis.

We are working on developing a broader understanding of this set of issues, as they apply to the areas of science and technology described above, and as they relate to the global catastrophic risks we focus on.

Coming Down to Earth: What if a Big Geomagnetic Storm Does Hit?

Note: Before the launch of the Open Philanthropy Project Blog, this post appeared on the GiveWell Blog. Uses of “we” and “our” in the below post may refer to the Open Philanthropy Project or to GiveWell as an organization. Additional comments may be available at the original post.

This is the fourth post in a series about geomagnetic storms as a global catastrophic risk. A paper covering the material in this series was recently released.

The Long-Term Significance of Reducing Global Catastrophic Risks

Note: Before the launch of the Open Philanthropy Project Blog, this post appeared on the GiveWell Blog. Uses of “we” and “our” in the below post may refer to the Open Philanthropy Project or to GiveWell as an organization. Additional comments may be available at the original post.

Note: this post aims to help a particular subset of our audience understand the assumptions behind our work on global catastrophic risks.

Geomagnetic Storms: Using Extreme Value Theory to Gauge the Risk

Note: Before the launch of the Open Philanthropy Project Blog, this post appeared on the GiveWell Blog. Uses of “we” and “our” in the below post may refer to the Open Philanthropy Project or to GiveWell as an organization. Additional comments may be available at the original post.

This is the third post in a series about geomagnetic storms as a global catastrophic risk. A paper covering the material in this series was just released.

Pages

Subscribe to RSS - Global Catastrophic Risks