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Abstract

We study the effect of potentially severe climate change on optimal climate change
policy, accounting for learning and uncertainty in the climate system. In particular, we
test how fat upper tailed uncertainty over the temperature change from a doubling of
greenhouse gases (the climate sensitivity), affects economic growth and emissions pol-
icy. In addition, we examine whether and how fast uncertainties could be diminished
through Bayesian learning. Our results indicate that while overall learning is slow,
the mass of the fat tail diminishes quickly, since observations near the mean provide
evidence against fat tails. We denote as “partial learning” the case where the planner re-
jects high values of the climate sensitivity with high confidence, even though significant
uncertainty remains. Fat tailed uncertainty without learning reduces current emissions
by 38% relative to certainty, indicating significant climate insurance, or paying to limit
emissions today to reduce the risk of very high temperature changes, is optimal. How-
ever, learning reduces climate insurance by about 50%. The optimal abatement policy
is strongly influenced by the current state of knowledge, even though greenhouse gas
(GHG) emissions are difficult to reverse. Non-fat tailed uncertainty is largely irrelevant
for optimal emissions policy.
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1 Introduction

Uncertainty is a dominant feature of climate change. Recent research highlights a par-

ticular aspect of climate change uncertainty: there exists a relatively small chance of severe

climate change. In particular, a doubling of greenhouse gases (GHGs) above preindustrial

levels may cause a very large steady state increase in temperature.1 Uncertainty creates

an insurance motive for reducing emissions, in that paying to limit GHG emissions today

prevents GHG concentrations from rising, which reduces the probability of very high tem-

perature changes. Further, the prior distribution of the temperature change caused by a

doubling of GHGs is known to have a fat upper tail, meaning the upper tail of the distribu-

tion of temperature changes declines at a rate slower than exponential. The existence of a fat

tail significantly increases the insurance value of current GHG abatement, since households

are willing to pay more up front abatement costs to eliminate fat tailed risk of severe climate

change.

However, climate change uncertainty differs from a standard insurance problem in that

learning reduces climate change uncertainty over time. If learning resolves climate uncer-

tainty relatively quickly, then the initial insurance premium might be small, as the planner

would still have time to increase abatement if learning quickly indicated the climate sensi-

tivity was large. However, if learning is slow to resolve climate uncertainty, then the optimal

policy calls for aggressive initial abatement for insurance purposes. The central question for

climate policy is then: how fast will learning resolve uncertainty about potential large steady

state temperature changes caused by GHG emissions, and what is the optimal climate policy

with fat tailed climate uncertainty and learning?

The prior literature finds that learning is a slow process. Kelly and Kolstad (1999b)

consider uncertainty regarding the heat capacity of the ocean. In their integrated assess-

ment model, stochastic weather shocks obscure the climate change signal in the temperature

data, which slows Bayesian learning. This result has since been confirmed in models with

other types of climate uncertainty and different distributional assumptions. In particular,

Leach (2007) considers uncertainty over the climate sensitivity, which is the steady state

temperature change per unit of radiative forcing,2 a measure of the elasticity of the climate

1The Intergovernmental Panel on Climate Change (2007) reviews many studies and finds values higher
than 4.5°C cannot be ruled out, although the best estimate is closer to 3°C. Weitzman (2009) averages 22
studies and finds a 5% chance that a doubling of GHGs will cause temperatures to rise more than 7°C. Other
papers which estimate the current scientific uncertainty regarding the climate sensitivity include: Lemoine
(2010), Newbold and Daigneault (2009), Roe and Baker (2007), Schwartz (2007), and Baker and Roe (2009).

2The more familiar ∆T2×, or the steady state temperature change from a sustained doubling of GHG
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to changes in GHG concentrations, and finds Bayesian learning about the climate sensitivity

is extremely slow.3 Roe and Baker (2007) argue that resolving uncertainty regarding the

climate sensitivity is difficult, because small uncertainties in climate feedbacks magnify the

uncertainty about the climate sensitivity.4 Keller, Bolker, and Bradford (2004) show that

slow learning about the climate sensitivity combined with an uncertain climate threshold,

implies significant near term abatement is optimal, to avoid accidently exceeding the thresh-

old. Lemoine and Traeger (2013) study alternative uncertain thresholds with learning and

find somewhat smaller effects on near term abatement.

However, it is possible that the planner learns enough to reject severe climate change

with a high degree of confidence quickly, even though the climate sensitivity is difficult to

pin down precisely. We define this case as “partial learning.” To investigate partial learning,

we develop a quantitative integrated assessment model of the world economy.5 In the model,

the planner faces stochastic weather shocks and uncertainty over the first order autoregressive

coefficient in the equation governing evolution of temperature, which is the climate feedback

parameter.

Because the climate feedback parameter is uncertain, the climate sensitivity is also un-

certain. Further, if the climate feedback parameter is close to one, then GHG “shocks” to

temperature are long lived, and therefore an increase in GHG emissions causes very high

steady state temperature changes. Hence, although uncertainty in the feedback parame-

ter is normally distributed, uncertainty in the climate sensitivity has a fat upper tail (see

for example, Roe and Baker 2007). The social planner learns the feedback parameter, and

therefore the climate sensitivity, by updating prior beliefs given stochastic temperature data

using Bayes rule.

We define the lower bound of the fat tail as when a doubling of GHGs implies steady

state temperatures increase by 1.5°C more than the mean of the current prior distribution.

For example, we calibrate the mean of the current prior equal to 2.76°C, so the tail of the

distribution equals values greater than or equal to 4.26°C.6 When the planner can reject the

concentrations, is proportional to the climate sensitivity.
3Both of these papers and our paper consider observational learning in the sense that the planner learns

from the data on temperature and GHG concentrations. An alternative is to allow learning where the planner
pays for R&D. Nonetheless, to fully resolve uncertainty, all R&D must eventually be confirmed in the data.

4Climate feedbacks are changes in the climate system brought on by higher temperatures which amplify
or diminish the relationship between GHGs and temperature (climate forcing). For example, higher temper-
atures melt ice, which in turn implies less heat is radiated back into space, which amplifies climate forcing.
The magnitude of many climate feedbacks are uncertain (Forest, Stone, and Sokolov 2005).

5An integrated assessment model is broadly defined as a model which combines scientific and socio-
economic aspects of climate change to assess policy options for climate control (Kelly and Kolstad 1999a).

6No generally agreed upon value for what constitutes the tail of the prior distribution exists. Nonetheless,
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hypothesis that the climate sensitivity implies a steady state temperature increase greater

than or equal to the critical temperature at the 1% or 0.1% level, we say that partial learning

is complete.7 Such learning is partial in the sense that significant uncertainty typically

remains even after a high climate sensitivity is rejected.

Our results show that the social planner rejects that the climate sensitivity is in the upper

tail of the prior distribution very quickly. That is, although we confirm results in the previous

literature that learning the actual true value precisely is a relatively slow process, the planner

is able to reject values of the climate sensitivity in the upper tail of the prior distribution

quickly. In fact, the planner can reject very high values of the climate sensitivity (e.g. 1.5°C

or more above the mean estimate) at 99% confidence interval in less than a decade, if the

true climate sensitivity is moderate. First, observations near the moderate true value provide

evidence against the tails of the distribution. In addition, the density of even a fat tail is

not large, so Bayes rule requires relatively few observations to reduce the mass of the fat tail

below the critical confidence level. This result is surprising given the common intuition in

the literature that reducing uncertainty in the tail of the climate sensitivity prior distribution

must be a slow process since climate disasters are rare (see for example, Weitzman 2009,

page 12).

If the true climate sensitivity turns out to be relatively high, learning progresses more

slowly. First, Bayes rule requires more observations to move the mean estimate from the prior

of a moderate climate sensitivity to the true high value. Second, Bayes rule requires more

observations to resolve the difference between a climate sensitivity that is relatively high and

a climate sensitivity which is very high. Nonetheless, because a high climate sensitivity is

relatively unlikely according to the prior, the possibility that learning is slower due to a high

climate sensitivity receives relatively little weight when computing the expected time until

partial learning is complete.

For example, we find that the expected learning time when the lower bound of the fat

tail is 4.26°C is only about 8 years at the 0.1% level. However, if the lower bound is 10°C,

partial learning is not complete for almost 50 years. Integrating over the prior distribution,

we find that the expected time, conditional on prior information, until partial learning is

complete is only about 17 years at the 0.1% level.

Like Weitzman (2009), our model considers a high climate sensitivity as a possible sce-

nario with high damages from climate change. Other potentially high damage scenarios exist,

much of the literature uses higher values (e.g. Weitzman, 2009 discusses values above 7°C). A larger lower
bound would only strengthen our results.

7See Kelly and Kolstad (1999b) for a justification for using hypothesis tests to measure learning.
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including high sea level rise (Nicholls, Tol, and Vafeidis 2008), thermohaline circulation col-

lapse (Keller, Bolker, and Bradford 2004), and a reduction in the decay rate of carbon into

the ocean (Lemoine and Traeger 2013).8 Learning in each of these contexts may differ from

our results. For example, if variation in the size of ice sheets unrelated to temperature was

significant, learning about sea level rise would proceed more slowly. Nonetheless, fat tailed

uncertainty in the climate sensitivity is most commonly analyzed high damage scenario in

the literature, presumably because the fat tail is clearly evident in the scientific priors.

In terms of optimal policy, we quantify the effect of uncertainty on near term emissions

and abatement policy. With uncertainty but without learning, in the initial period emis-

sions are about 38% lower, and the carbon tax is $22.94 higher, than under certainty. The

planner insures by reducing emissions, paying for more abatement to reduce the probability

of high damages that occur if the climate sensitivity is high. However, in the current period,

emissions with uncertainty and learning are only about 19% lower than under certainty. The

optimal carbon tax with uncertainty and learning is only $8.84 per ton higher than under

certainty. Therefore, learning reduces emissions abatement for insurance purposes by about

50%. Further, optimal emissions with uncertainty and learning converge quickly to emissions

given perfect information, typically in about 16 years. Uncertainties remain after 16 years,

but the remaining uncertainty is not relevant for the optimal emissions policy. The fat tail

drives policy, and learning shrinks the mass of the fat tail quickly.9

Fat tailed uncertainty arises naturally when multiple uncertainties exist,10 or, in the

approach taken here, when an uncertain parameter has a multiplicative effect through feed-

backs in the climate system. Climate sensitivity uncertainty is then fat tailed, even if the

prior distribution for the uncertain parameter is normal (Roe and Baker 2007). In turn,

Weitzman (2009) shows that, given a coefficient of risk aversion greater than or equal to one,

the risk premium required to accept an uncertain climate sensitivity with fat tails is infinite

(the dismal theorem).11

However, Costello, Neubert, Polasky, and Solow (2010) shows that the dismal theorem is

8Tol (2009) reviews the findings of the literature on various damages caused by climate change.
9Optimal policy under learning converges quickly to the perfect information case even if the true climate

sensitivity is very high. This is because with a higher mean estimate, deviations from certainty are driven
by the mass of the tail of the new distribution with a higher mean, and the mass of the tail of the new
distribution still shrinks quickly.

10For example, if the prior distribution for the climate sensitivity conditional on the variance of the
weather shocks is the thin tailed normal distribution and the variance of the weather shocks is also unknown,
with a gamma prior, then the unconditional prior distribution for the climate sensitivity is the fat tailed t

distribution.
11See also Geweke (2001).
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an asymptotic result. They find that truncating the distribution of uncertainty at a high level

invalidates the dismal theorem. They argue that temperature changes should be truncated,

since infinite temperatures are not physically possible, which we adopt here.12

Our results do not contradict the dismal theorem. Fat tails do in fact remain in our

climate sensitivity distribution for any finite number of observations, and without truncation,

the risk premium is infinite.

Our results therefore show the importance of results by Costello, Neubert, Polasky, and

Solow (2010) for policy. We show that the fat tail is important for near term policy, even with

truncation. Nonetheless, we show that with a small number of observations, learning reduces

the upper tail of the distribution to close to an exponential. Therefore, although learning

has no effect on the infinite risk premium without truncation, with truncation learning does

significantly reduce the risk premium.

Put differently, our results highlight the difference between variance and fat tails. It

is possible, through learning, to reduce the variance so that the mass in the upper tail is

arbitrarily small. For example, we show that in many cases the planner can reduce the mass

in the tail to 1% or 0.1% in just 10-16 years. The planner then easily rejects the hypothesis of

a high climate sensitivity. However, tails are still fat in that the rate of decline in the upper

tail is eventually slower than exponential. Therefore, with truncation, abatement policy is

sensitive to the mass of the fat tail, which learning reduces by reducing the variance.

Considerable debate exists in the literature on the importance of fat tailed uncertainty

for near term climate policy when learning is possible. For example, Weitzman (2011) argues

that strong inertia in the climate should mean learning is less relevant for near term policy.

Given that the stock of GHG emissions is difficult to reduce quickly, it will be difficult

to reduce GHG concentrations if we learn climate change is more severe than expected.

Conversely, Nordhaus (2011) argues that severe climate change should be evident in the

data within the next 50 years, and so time exists to reduce GHG concentrations. Pindyck

(2011) points out that the question is inherently quantitative and depends on the cost of

insurance, the probability of severe climate change, etc.

This paper provides a quantitative answer. It is indeed important to reduce emissions

initially due to the fat tailed uncertainty and the difficulty in reversing GHG stocks. Nonethe-

less, consistent with Nordhaus’ idea, learning is indeed fast enough so that mid course cor-

rections are possible. For example, we show that if the true climate sensitivity implies a

steady state temperature change of 5°C for a doubling of GHG concentrations, then the

12Millner (2011) discusses other key assumptions of the dismal theorem.
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planner reduces emissions to within 1% of the certainty level in only 14 years. Emissions

under learning remain slightly below (0.6-0.7%) the certainty level for 53 years as the planner

corrects for initially over-emitting, to bring GHG concentrations to the perfect information

trajectory.

Note that in all of above results, convergence to the perfect information level of emissions

requires only partial learning. Indeed we show that learning is not complete (in the sense

that the planner can reject values plus or minus 5% away from the true value with 95%

confidence, see for example, Leach 2007) for 50-100 years depending on the true value of

the climate sensitivity.13 Learning is slow, but the remaining uncertainty after the fat tail

is statistically rejected is not important for policy. Only the fat tail provides an insurance

motivation for near term abatement.

The structure of this paper is as follows. Section 2 presents our integrated assessment

model with learning. The model is solved and calibrated in Section 3, and Sections 4 and 5

presents simulation results. Section 6 concludes.

2 Model

The model is similar in spirit to a simplified DICE model (Nordhaus 2007). Economic

growth generates GHG emissions, which in turn cause temperatures to rise, reducing produc-

tivity. However, we use the abatement cost function from Bartz and Kelly (2008), and use

different assumptions about future improvements in the emissions intensity of output. The

learning model and stochastic temperature change follows Kelly and Kolstad (1999b) and

Leach (2007) except that we look at learning the fat tailed climate sensitivity rather than

learning the primitives of the temperature model. The damage function is from Weitzman

(2009).

2.1 Economic system

The population of Lt identical households have preferences over consumption Ct/Lt given

by the period constant relative risk aversion utility function:

U

(

Ct
Lt

)

=

(

Ct

Lt

)1−σ

− 1

1− σ
. (1)

13In this sense, our results are consistent with Kelly and Kolstad (1999b), who estimate learning about
the heat capacity was complete after about 90 years.
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A constant returns to scale technology exists that produces output Qt, from capital

Kt, and productivity-augmented labor AtLt. Here At is labor productivity, which grows

exogenously at rate φ. Population grows at exogenous rate η. The production technology is

such that:

Qt = F (Kt, AtLt) = Kψ
t (AtLt)

1−ψ . (2)

Unabated GHG emissions are an exogenous proportion 1/Bt of output. Let ut denote

the fraction of emissions abated, then (1 − ut)/Bt is the emissions intensity of output, and

emissions, Et, are:

Et = (1− ut)
Qt

Bt

. (3)

The cost of abatement is Λ (ut)Qt. Hence, output net of abatement costs, Yt, is

Yt = (1− Λ (ut))Qt. (4)

We assume a convex cost function:

Λ (ut) = 1− (1− ut)
ǫ . (5)

The abatement cost function (5), differs from standard cost functions in the literature. For

example, Nordhaus (2008) uses a two parameter function: Λ (ut) = ǫ1u
ǫ2
t . The abatement

cost function (5) has a particular advantage in that it is consistent with a balanced growth

path (Bartz and Kelly 2008), which simplifies the computations considerably. Further, with-

out a balanced growth path, either emissions goes to zero or infinity, or the growth rate in

labor productivity must be forced to go to zero.

Using equations (2)-(5) to substitute out for Qt and ut implies output net of abatement

costs is Cobb-Douglas:

Yt = F (Kt, BtEt, LtAt) = Kθ
t (BtEt)

ǫ (AtLt)
1−θ−ǫ . (6)

Here θ = ψ(1− ǫ) is the capital share and ǫ can thus be interpreted as the emissions share.14

A balanced growth path is a steady state where aggregate capital, output, and con-

sumption all grow at the same constant rate (1 + η) (1 + φ) − 1. A balanced growth path

exists with constant emissions if the exogenous growth rate of Bt equals the growth rate of

14Bartz and Kelly (2008) calibrate the emissions share for four air pollutants.
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output:15

Bt+1 = (1 + η) (1 + φ)Bt. (7)

Exogenous growth of Bt captures both technological change in abatement and compositional

changes in output.

Let capital depreciate at rate δk. The resource constraint then sets consumption plus net

investment equal to production net of abatement costs after damages, D (T ), due to climate

change:

Ct = (1−D (Tt)) Yt + (1− δk)Kt −Kt+1, (8)

where the damage function is:

D (Tt) = 1− e−b1T
b2
t . (9)

Here b1 and b2 are damage parameters.

2.2 Climate system

Let Mt represent the current accumulation of carbon-equivalent GHG in the atmosphere,

and MB is the preindustrial stock. We assume the ocean and biosphere absorb atmospheric

carbon at a constant rate δm. Let γ = A0L0E0/Q0 be the initial emission intensity coefficient.

The stock of pollution accumulates according to:

Mt+1 −MB = (1− δm) (Mt −MB) + γEt. (10)

We use a one equation physical model for temperature:

T̂t = T̂t−1 +
1

α

(

Ft −
T̂t−1 − Γ

λ

)

+ νt. (11)

Here T̂t is the annual global temperature (difference in °C between year t and the 1961-

1990 average temperature); Γ is preindustrial temperature difference from the 1961-1990

average temperature; α is the heat capacity of the upper ocean; λ is the climate sensitivity;

15Note that if Bt grew slower than the rate of output then the returns to emissions savings innovation
would approach infinity, while the returns to labor productivity would go to zero, and the reverse if Bt grew
faster than the rate of output.
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ν ∼ N(0, σ2
ν) is the stochastic weather shock; and Ft is radiative forcing of GHGs:

Ft = Ω log2

(

Mt

MB

)

. (12)

Here Ω is the radiative forcing parameter. Equations (11) and (12) vastly simplify large

physical models of climate, known as general circulation models (GCMs). Nonetheless,

models similar to (11) and (12) are frequently estimated and used for policy analysis.16

The uncertain parameter is the climate sensitivity λ, which measures how responsive tem-

perature is to GHG concentrations. The climate sensitivity amplifies the effect of radiative

forcing on temperature. To see this, rewrite equations (11) and (12) as:

Tt = β1Tt−1 + β2 log2

(

Mt

MB

)

+ νt. (13)

Here Tt = T̂t − Γ is the annual global temperature deviation from preindustrial level, β1 =

(1 − 1

λα
) is the climate feedback parameter, and β2 = Ω

α
. The climate feedback parameter

is positively related to the climate sensitivity. Since the climate sensitivity is uncertain, the

climate feedback parameter β1 is also uncertain.

Let ∆T2× be the steady state temperature change that results from a steady state dou-

bling of the GHG concentrations, then from equations (11) and (13):

∆T2× = Ωλ =
β2

1− β1
. (14)

Since λ is uncertain ∆T2× is also uncertain. The steady state temperature change from a

doubling of CO2 is most straightforward to understand, so we will report most results in

terms of the equivalent ∆T2×.

Emissions, Et, temperature, Tt, and GHG concentrations, Mt, are constant along the

balanced growth path.

2.3 Learning

Each period the social planner observes new statistical records of the climate system and

updates beliefs on the uncertain feedback parameter. Bayesian learning characterizes this

16See for example, Andronova and Schlesinger (2001) and Schwartz (2007). Kelly, Kolstad, Schlesinger,
and Andronova (1998) discuss some weaknesses of one equation physical models. Traeger (2012) calibrates
a one equation model to match near term temperature changes predicted by the Nordhaus DICE model.
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process.

Assume the planner has prior beliefs that the true β1 is drawn from a normal distribution,

N (µ0, S0), where S0 is the variance of the prior distribution. Let:

Ht = Tt − β2 log2

(

Mt

MB

)

= β1Tt−1 + νt. (15)

Then Ht+1 ∼ N
(

µH,t, σ
2
H,t

)

combines the stochastic weather shocks and feedback uncertainty

into a single random variable, where µH,t = µtTt and σ2
H,t = T 2

t St + σ2
ν .

The t+1 weather shock occurs at the start of the period, before decisions are made. The

social planner thus observes Ht+1, and Tt and updates the prior on β1. Let pν = 1/σ2
ν be the

precision of ν. Then Bayes rule implies that the posterior distribution of β1 is also normally

distributed with:

µt+1 =
µt + StpνTtHt+1

1 + StpνT
2
t

, (16)

St+1 =
St

1 + StpνT 2
t

. (17)

Note that from equation (17) that the variance estimate on β1 is monotonically non-increasing

with time. We use variance instead of the usual precision since the variance is bounded above

by the prior, while the precision is unbounded above.17 Perfect information implies S = 0

and µ = β1.

Roe and Baker (2007) compute the probability density function (PDF) for the climate

sensitivity from a Jacobian transformation. Let, β1 = 1 − 1

αλ
∼ N (µ, S), then the density

for the climate sensitivity is:

hλ (λ) = hβ1 (β1 (λ))

(

∂β1
∂λ

)

=
1√
2πS

1

α

λ2
exp

[

− 1

2S

(

1− 1

αλ
− µ

)2
]

. (18)

The prior distribution of the climate sensitivity has a fat upper tail if and only if the tail

probability declines to zero at a rate slower than exponential:

lim
λ→∞

hλ (λ)

exp (−aλ) > 0, a > 0. (19)

It is straightforward to verify that hλ (λ) satisfies condition (19). The fat upper tail is clearly

visible in Figure 1, which plots hλ (λ).

17The computational solution method requires a bounded state space.
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2.4 The Recursive Problem

The social planner maximizes the expected present discounted value of the stream of

period utilities weighted by the population size:

W = max
∞
∑

t=0

βtLtU

(

Ct
Lt

)

. (20)

We normalize the problem so that variables are in per labor productivity unit terms. Let

f (K,E) = F (K,E, 1), kt = Kt/ (AtLt) and similarly for ct and yt, mt =
Mt

MB
and assume

β̂ ≡ β (1 + η) (1 + φ)1−σ < 1. Then we can write the recursive version of the social planning

problem as:

v (k,m, T, µ, S) = max
k′,E

{

c1−σ

1− σ
+

β̂

∫

H′

v (k′, m′, T ′, µ′, S ′)N
(

H ′, µT, T 2S + σ2
ν

)

dH ′

}

, (21)

subject to:

c = (1−D(T )) f (k, E) + (1− δk) k − (1 + η) (1 + φ) k′, (22)

m′ = 1 + (1− δm) (m− 1) +
( γ

MB

)

E, (23)

T ′ = H ′ + β2 log (m
′) , (24)

µ′ =
µ+ SpνTH

′

1 + SpvT 2
, (25)

S ′ =
S

1 + SpvT 2
. (26)

Equation (21) condenses the double expectation over unknown variables β1 and ν ′ into

an expectation over a single unknown variable H ′. Table 1 gives the variable definitions for

the above problem.

3 Calibration and Solution Method

Table 2 gives the parameter values. For the economic parameters, we chose a risk aversion

coefficient of σ = 1.5. The discount factor is consistent with a 5% rate of time discount,

which implies the model economy matches the US capital to output ratio. The depreciation

rate of capital is 6%, which implies the model economy matches the US investment to output
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ratio. The population growth rate is 1% and the growth rate of per capita GDP is 1.8%,

which match US data. These values are broadly consistent with the business cycle literature

(Bartz and Kelly 2008, Cooley and Prescott 1995).

The emissions share parameter is also the parameter of the abatement cost function. In

general, the abatement cost function has only one parameter and therefore cannot match

both the low cost of abatement when ut is low, and the convexity of the Nordhaus (2008) cost

function. We chose the calibrated value to match well for low values of ut, which results in

an abatement cost function which is more convex. Therefore, initial control rates, emissions,

and carbon taxes will tend to be similar to Nordhaus, but in later years, when larger control

rates are optimal, our results will generally show lower abatement costs and carbon taxes.

The damage parameters are taken from Weitzman (2009). The damage parameters and

discount factor are set relatively conservatively. A discount factor closer to one or a high

damage scenario (for example, Weitzman also considers b2 = 4) would increase both the

value of abatement as climate insurance, and the value of learning. We consider the high

discount factor case in Section 6.

One issue with the calibration is that the model sets the growth rate in the inverse of

the emissions intensity of output (Bt) equal to the growth rate of output. This is done so

that the balanced growth path exists with constant emissions. In the long run, the growth

rate of Bt should equal the growth rate of output otherwise the returns to labor productivity

innovations will either be infinite or zero. That is, any other value is inconsistent with a

more general model in which R&D expenditures flow towards the sector (emissions or labor)

with the highest marginal returns to innovation. Nonetheless, in the short run the rate

of growth in Bt can differ from that of output (for example, if random innovations in one

sector are more successful than the other). In fact, the growth rate of Bt has exceeded the

growth rate of output in recent years. Allowing for different short run growth rates (as is

done in Nordhaus, 2008, for example), would considerably complicate the analysis by adding

additional state variables, however.

The variance of the weather shock is taken from Leach (2007). The remaining climate

and forcing parameters are set consistent with Nordhaus (2008).

We use a multidimensional spline approximation of the value function and value function

iteration to solve the problem. After we solve the model, we approximate the policy func-

tion using another spline approximation and do the simulations. Our numerical integration

truncates the temperature distribution at 26.8°C, for computational reasons.18

18See Costello, Neubert, Polasky, and Solow (2010) for a justification. Further, the numerical integration
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4 Results: Learning

4.1 Partial Learning

The solution of the dynamic program is a value function v(k,m, T, µ, S) and the cor-

responding policy functions giving optimal investment and emissions k′∗(k,m, T, µ, S) and

E∗(k,m, T, µ, S). The evolution of the state and control variables over time follows:

[

k′ m′ T ′ µ′ S ′ E
]

≡ G ([k,m, T, µ, S] , λ, ν ′) . (27)

Here the function G is comprised of the policy functions and the laws of motion for the state

variables, equations (23)-(26). A simulated time path thus requires a set of random draws

for ν over time and a true value of λ. Each experiment consists of 150 simulations, over

6,500 years, for a given true value of λ. We report simulations for various hypothetical true

values for λ, and then take expectations over the results using the prior distribution to get

expected results given the current state of information.

Table 3 gives the initial conditions, which are set to the year 2005. The initial conditions

for the learning parameters are from Roe and Baker (2007), who survey various global circu-

lation models (GCMs). Initial conditions for capital, temperature, and GHG concentrations

are from Nordhaus (2008).

We say partial learning is complete if the planner can reject values of the climate sensitiv-

ity which are in the tail of the distribution at a given confidence level. That is, partial learning

is complete if the planner rejects the hypothesis λ < TL/Ω or equivalently ∆T2× < TL, where

TL is the lower border of the tail of the distribution (°C).

The lower border of the climate sensitivity distribution which constitutes the “tail” has no

precisely agreed upon definition. Further, from equation (21) the optimal decision takes into

account the entire distribution in a continuous way. Our hypothesis is that the tail of the

distribution drives current optimal abatement policy. If the mass of the tail shrinks quickly,

the remaining uncertainty is irrelevant and the optimal policy converges to the certainty

case. The first step is therefore to show that learning about the tail of the distribution

differs from learning about the mean, which requires a definition of what constitutes the tail

of the distribution.

routine also truncates so that values of the climate feedback parameter outside the unit interval have zero
probability. In this sense, a prior distribution bounded by zero/one, such as the beta distribution may
be more appropriate. We use the normal distribution since any computational solution method requires a
conjugate family of distributions, but also to follow the literature (see for example, Roe and Baker 2007).

13



Therefore, we set the lower border of the tail of the distribution conservatively as TL =

∆T2×,t + 1.5°C, where T2×,t is the current mean estimate of the climate sensitivity.19 The

initial prior mean equals 2.76°C, so the initial lower border of the tail is TL = 4.26°C, which

constitutes the upper 16.7% of the mass of the distribution. If the true value is large, say

5°C, then learning will move the mean of the prior higher, and the uncertainty can eventually

be partitioned into uncertainty about the exact value of the climate sensitivity (near 5) and

uncertainty about the probability of still higher values (even more disastrous values greater

than 6.5 are possible).20

The planner’s optimization problem (21) does not specify such a test as part of the

optimal policy. Instead, we are developing a hypothesis that the effect of uncertainty on

optimal policy can be approximately partitioned into two parts: the effect of uncertainty

over the exact value of the climate sensitivity, and the effect of uncertainty over the mass of

the tail of the distribution.

We consider two confidence levels, 99% and 99.9%. Given the high damages associated

with severe climate change, we assume the planner requires a relatively high level of confi-

dence that the climate sensitivity is not large before rejecting the hypothesis that the true

climate sensitivity is in the tail of the distribution.

We consider 50 possible true values, ∆T i∗2×, indexed by i. For each ∆T i∗2×, for each

simulation j, and associated random vector of weather shocks νj, we record the first period,

n∗
(

∆T i∗2×, νj
)

, for which the hypothesis that ∆T2×,jt > TL is rejected and not subsequently

not-rejected. We then say that the planner achieves partial learning in period n∗, for true

value of ∆T i∗2× and simulation j.

We then average over all simulations, and weight all n∗ using the prior distribution.

Mathematically:

E [n∗|µ0, S0] =

∫

∞

1/α

∫

ν

n∗ (λ, ν)N
(

0, σ2
ν

)

hλ (λ) dνdλ. (28)

Table 4 shows the results. The expected time to complete partial learning varies from

8.99-14.58 periods, depending on the required confidence level. Partial learning is relatively

19Values above 1.5° will speed up the learning, values less than 1.5° mean the tail is relatively likely to
occur, which is inconsistent with the idea that the true value is in the tail with relatively low probability.

20Alternatives are less attractive. If the lower border of the tail is fixed for all t (say TL = 5°C), then
the planner must essentially learn the exact value of the climate sensitivity for true values near the lower
border, since in that case the tail of the distribution converges to the upper half of the distribution. As
∆T2×,t → TL, this definition of partial learning requires an arbitrary large number of periods to complete,
which is not consistent with the optimal policy in Section 5.
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quick for three reasons. First, by definition the initial mass of the upper tail is not large.

Therefore it takes relatively few observations away from the tail to reduce the mass to 1% or

0.1%. Second, although the global temperature is subject to random weather shocks which

makes the exact value of the climate sensitivity difficult to pin down, the calibrated standard

deviation of the shocks is only 0.11°C, which makes it relatively easy to reject high values

of the climate sensitivity if the true value is not too large. Third, most of the mass of the

prior distribution is relatively close to the mean. Therefore, true values with smaller learning

times receive more weight when calculating the expected learning time conditional on the

prior distribution. As expected, partial learning at the 99.9% confidence level requires more

periods than at the 99% confidence level.

Figure 2 shows the learning time as a function of ∆T ∗

2× for both confidence levels. For true

values near the mean of the prior distribution (2.76°C), learning takes less than 10 periods,

but rises to 90 years or more as ∆T ∗

2× increases. Partial learning becomes increasingly difficult

as ∆T ∗

2× increases. Since λ = 1/(α(1−β1)), for values of β1 near one, small differences in β1

generate large differences in λ. Therefore, the planner must learn β1 with increased precision

to reject values of λ in the tail of the distribution when β1 is near one. For example, with

β1 equal to the prior, the lower bound of the tail (TL = 4.26) corresponds to βL1 = 0.77,

which is rejected in reasonable time given a true value of β∗

1 = 0.65 and a calibrated standard

deviation of the weather shocks equal to 0.11. Conversely, if ∆T ∗

2× = 5 and TL = 6.5 then

β∗

1 = 0.81 and βL1 = 0.85, which is much harder to reject.

Put differently, for β1 large, precise learning is much more important, because small

differences in β1 imply large differences in the decay rate of GHG “shocks” to temperature.

Small differences in β1 therefore imply large differences in steady state temperature for a

given concentration of GHGs, making a precise estimate of β1 more important.

Figures 1 and 2 together show that, for most of the prior distribution, partial learning

requires less than 20 periods to complete. The expected number of periods until partial

learning is complete conditional on prior information is relatively small. Longer learning

times are possible but unlikely.21

21Note that the priors are based on physical, rather than statistical models of temperature change. There-
fore, the results may be interpreted as saying that to confirm or refute physical models which predict a
relatively high climate sensitivity will require relatively little additional data.
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4.2 Alternative Assumptions

We next report learning times given alternative assumptions. First, we simulate the

model with an ocean layer.22 Let Ôt be the ocean temperature in deviations from the recent

average and ζ and τ be heat transfer coefficients, then the climate system (11) now becomes:

T̂t = T̂t−1 +
1

α

(

Ft −
T̂t−1 − Γ

λ

)

− ζ
(

T̂t−1 − Ôt−1

)

+ νt, (29)

Ôt = Ôt−1 + τ
(

T̂t−1 − Ôt−1

)

. (30)

Because heat transfer to the ocean is a slow process, the model now takes much longer to

reach the steady state. However, Table 4 shows that partial learning is complete in 15.84-

24.39 periods, which is only slightly longer than with the one equation model. To learn

the true climate sensitivity, the planner must statistically isolate the upward trend in the

climate from the stochastic weather shocks. The ability of learning to do so is only marginally

affected by the ocean and other climate processes with long lags, since the ocean temperature

is essentially constant on a year to year basis. Thus our results are robust to the addition of

a more complicated climate model.

A very large weather shock can cause a hypothesis which was rejected in period n to be

no longer rejected in n+1. We also considered an alternative criterion in which n∗ is the first

period for which the hypothesis is first rejected, even if the hypothesis is no longer rejected

in a subsequent period. Table 4 gives the results, which are only slightly smaller than the

base case given in Table 4. As expected, learning is faster in this case, but still of a similar

magnitude.

4.3 Other Criteria

The above results constitute partial learning in that the only goal is to reject values of

the climate sensitivity in the tail of the prior distribution, not to fully learn the true value.

Similar to previous work (Leach 2007), we define two hypothesis tests, ∆T2× ≤ 0.95 ·∆T ∗

2×

and ∆T2× ≥ 1.05 ·∆T ∗

2×, where ∆T ∗

2× is the true value, and a desired confidence level of 95%.

If the planner rejects both hypothesis, we say that the planner has fully learned the uncertain

climate sensitivity, or that full learning is complete. Figure 3 plots the mean number of

22For computational reasons, we use the emissions and investment policy functions given in equation (27),
which assumes the ocean layer is constant. Since the ocean layer changes slowly over time, this assumption
is reasonable for the short term.
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periods required to fully learn the climate sensitivity. The learning time is increasing in the

true value. First, as the true value gets farther from the prior, Bayes rule must completely

reject the prior information in favor of the new observations. Second, as noted above, ∆T2×

is a nonlinear function of β1. When ∆T2× is large, the range of values of β1 that constitute

the plus or minus 5% of the true value becomes narrower, which increases the expected

learning time. Integrating over the prior distribution, we find an average learning time equal

to 79.67 years, This is roughly consistent with the previous literature (Kelly and Kolstad

1999b, Leach 2007).

Figure 4 plots the learning dynamics for the mean of the feedback parameter µ for three

simulations, when the true value is 0.65 (∆T2× = 2.76). In all simulations, learning converges

rather slowly to the true value (about 55-150 years). However, even for simulation 5, where

the first few weather shocks are positive, the mean estimate of ∆T2× is well below the

border of the tail, TL = 4.26. The hypothesis TL ≥ 4.26 is first rejected at the 99.9% level

in periods 7, 10, and 5, respectively. Figure 5 plots the density for simulation 5 after 10

periods. Considerable uncertainty remains. Values of ∆T2× between 2.5 and 4 are plausible.

However, values above 4 are very unlikely. Partial learning is complete, although full learning

is not complete.

The last 3 rows of Table 5 presents the same information for the mean of 150 simulations.

The initial mass of the tail is 16.5%, and the 95% confidence interval admits a wide range

of possible values for the climate sensitivity, from the benign 0.97 to the disastrous 7.09°C

temperature change for a doubling of GHGs. By 2015, however, partial learning is complete

at the 99.9% confidence level, whereas full learning is not complete: the 95% confidence

interval is still fairly wide at almost 1°C. By 2050, the 95% confidence is fairly narrow,

although full learning is still not quite complete.

Figure 6 reports the learning dynamics for the standard deviation of the prior distribution

of the feedback parameter,
√
S, for simulation 5 when the true climate sensitivity equals the

prior. The standard deviation is monotonically decreasing as expected, and converges to

zero.

Learning the climate sensitivity precisely is a slow process. According to the prior lit-

erature with thin tails, slow learning indicates the optimal policy under learning is unlikely

to be much different than the optimal policy without learning. Since learning is slow, the

planner acts using current information. However, the above analysis shows that with learn-

ing the planner rejects extreme values relatively quickly, unless the true value is large. With

fat tails, the extreme values drive current policy. Therefore, the learning is potentially much

17



more policy relevant with fat tails. The next section makes these ideas precise.

5 Results: Optimal Policy

5.1 Optimal Insurance

In this section, we examine how learning and fat tailed uncertainty affect the optimal

emissions policy. Figure 7 plots optimal emissions for the case where the true climate sensi-

tivity is equal to the initial prior value. The circle line corresponds to perfect information,

where the initial variance of the prior is set to zero. In this case, optimal emissions in-

creases for a short period of time and is then decreasing. The initial world capital stock is

only 68% of its steady state level. Therefore, the planner postpones most emissions control

until the capital stock has converged and more resources are available. Both damages and

costs are a fraction of world GDP, so an increase in GDP affects both damages and costs

equally. However, more wealth implies more consumption, which decreases the marginal

utility of consumption. Therefore, emissions control becomes more attractive. In addition,

each year’s emissions have only a small effect on the GHG concentration, so the planner does

not incur much additional damage by waiting.

The line with squares shows the optimal policy under uncertainty with learning. As

the planner learns the true value, the emissions under learning and uncertainty converges

to emissions given perfect information. Notice that emissions under learning are initially

below the perfect information case. The planner insures, emitting less than under perfect

information just in case climate change turns out to be severe. Emissions are initially 19.3%

lower under learning than under perfect information (Table 5), but are only 1.1% lower by

2021. Uncertainty matters for a relatively short period of time. In Figure 7, the true value

is the initial guess. Therefore, the planner quickly rejects values of the climate sensitivity

in the fat tail, and the policy approximately converges to the perfect information case by

2025.23

The plus line corresponds to the no learning case. In this case, the learning parameters

µ and S are not updated, despite the new information. In addition, the model is solved

so that the planner knows µ and S will not be updated. Therefore, the no learning case

differs from the learning case, even in the initial period when the state vector is identical

23Note that emissions are slightly above the perfect information case for a short period of time. This
is because the planner has under-emitted relative to perfect information during the learning process. The
planner can therefore over-emit after rejecting the fat tail to reach the same steady state stock of GHGs.
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for both policies. Emissions are lowest under no learning. The planner must insure more by

reducing emissions without learning, because the planner knows that she cannot adjust later

as more information is revealed. Therefore, learning reduces the need for climate insurance.

Emissions for the no learning case are initially 38% below emissions given perfect information,

whereas emissions under learning are 19.3% below perfect information. Therefore, learning

reduces climate insurance by about 50% (Table 5).

Emissions under no learning are below the true optimal emissions for the entire time

path. The planner under no learning must continue to insure, whereas under learning climate

insurance is required for only a short time. Emissions for the no learning case are 48% below

perfect information in 2020, whereas emissions under learning are only 1.42% below certainty

at this point.

Given a true value equal to the prior (∆T2× = 2.76), the planner rejects the tail at the

99.9% confidence level after 7.2 periods (see Figure 2 and Table 5). Emissions under learning

is only 4.64% lower than emissions under certainty after 8 periods, and is only 1.07% lower

after 16 periods (Figure 7 and Table 5). In contrast, full learning is not complete for 63.8

years if ∆T2× = 2.76 (see Figure 3 and Table 5). Therefore, optimal emissions policy is more

sensitive to partial learning. Although uncertainty is present and the climate sensitivity is

difficult to pin down precisely, the planner rejects values in the tail quickly and thereafter

proceeds as if the planner was certain that ∆T2× equals the mean of the current prior.

Figure 8 gives the emissions control rate, which is increasing over time under certainty.

This is similar to the “ramp up” strategies found for example by Nordhaus (2008). The

control rate under learning is initially more stringent, but converges to the certainty case

at approximately the same rate as emissions. Without learning, the control rate remains

elevated as the planner continues to insure. The initial control rate under learning is 19.3%,

which is similar to values found in the literature. In contrast, without learning the initial

control rate is 38.3%, approximately twice as high (Table 5). Figure 9 shows the carbon tax.

The initial carbon tax is $46.1 per ton, also within the range of typical estimates.

Figure 10 gives the path of temperature increases. The policies with learning and perfect

information differ very little in terms of the GHG stock, since the planner adjusts emissions

to keep the economy on the same GHG stock trajectory after learning takes place. Emissions

and the GHG stock are lower under no learning due to the insurance, resulting in a smaller

temperature increase.

Figures 11-13 repeat the experiment with the true ∆T2× = 2 rather than 2.76. In this

case, the planner learns over time that the climate has only small feedback effects, and
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therefore that GHG concentrations cause smaller steady state temperature increases. The

planner then emits considerably more under perfect information than when ∆T2× = 2.76,

3.55 gigatons more in the steady state. Figure 12 indicates the planner under perfect infor-

mation reduces emissions by less than one percent initially, which increases to a maximum

reduction of only 1.5%. Under learning, the planner begins with the same information set

as when the true ∆T2× = 2.76, and therefore chooses the same initial policy as in Figure 7.

As new information arrives which decreases the prior, the planner under learning begins to

increase emissions.

The planner rejects the fat tail sooner here, since a relatively small λ implies βL1 is not

close to β∗

1 . Emissions under learning converge to within 0.4% of emissions under perfect

information after 4 periods. Similarly, partial learning is complete after 3.65-5.07 periods

at the 99% and 99.9% confidence levels, respectively (Figure 2). In contrast, full learning is

not complete until after 57.0 periods (Figure 3). After ruling out the fat tail, the planner

proceeds along a path very close to perfect information, even though uncertainty remains.

Without learning, the initial conditions are identical as when the true value is 2.76.

Therefore, the initial policies without learning are identical in Figures 7 and 11. Since

the planner does not update the prior, emissions are below perfect information indefinitely.

In fact, emissions without learning are quite similar in Figures 7 and 11. The insurance

motivation is the main determinant of emissions policy without learning, and differences in

emissions policy caused by the different temperature trajectories are minor.

Finally, Figures 14-16 repeat the experiment with the true ∆T2× = 5. Given that GHG

concentrations are projected to more than double,24 this represents a high damage case.

Under certainty, the planner responds to the high ∆T2× by severely limiting emissions.

Figure 15 indicates the planner reduces emissions initial by 52.4% and by 72.2% in the

steady state under certainty.

Initial optimal emissions policy with learning is unchanged from the previous cases, since

the initial beliefs are unchanged. Emissions fall over time as the planner increases the mean

belief of the climate sensitivity over time in response to higher than expected temperatures.

Emissions policy under learning converges to within 1.1% of emissions policy under certainty

in 17 periods. From Figure 2, partial learning is complete after 16.09 periods at the 99.9%

confidence level. In contrast, learning is not complete for about 105.6 years (see Figure 3)

for a true value of ∆T2× = 5. The planner learns that the climate sensitivity is much higher

24However, the optimal emissions path under certainty limits GHG concentrations to only 55% above
preindustrial levels when ∆T2× = 5.
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than the prior, but also learns that still higher values are unlikely, even if the exact value is

difficult to pin down. Optimal emissions converges to the certainty case, and the remaining

uncertainty is not relevant for policy.

Emissions under learning is about 0.6%-0.7% less than emissions under certainty from

2022 to 2270. Under learning the planner has over-emitted relative to perfect information

in the first 16 years, and must therefore under emit relative to certainty to bring GHG

concentrations to the same steady state trajectory. The planner smoothes out the error

correcting over a considerable period because emissions control costs are convex and because

of consumption smoothing.

For all three true values of ∆T2×, the upper tail of the distribution is initially policy

relevant. Emissions under learning are significantly below emissions if the prior is known

with certainty (Figure 11). However, learning quickly reduces the mass of the upper tail of

the distribution, and emissions quickly converge to the certainty case.

5.2 Fat Tails and Variance

Figures 1, 17, and 18 shows the evolution of the posterior PDF for ∆T2× when the true

value is 2.76 (equal to the current prior), after 0, 10, and 50 periods, respectively. We also

plot the normal distribution with identical parameters on each graph,25 to emphasize the fat

tail of the distribution of the climate sensitivity. Contrasting Figures 1 and 17, we see that

after only 10 periods the mass of the fat tail shrinks considerably. Values of ∆T2× above 3.5

are very unlikely.

However, as Weitzman (2009) points out for the case of the t distribution, the tail remains

fatter than normal for any finite number of observations. Here our distribution is not t, but

the same result applies. Condition (19) holds for any S > 0, so the tails remain fat for any

finite number of observations. After 50 years, the mass of the tail barely visible on Figure

18, but nonetheless, the tail is still fatter than normal.

Section 5.1 shows fat tails are relevant initially for optimal emissions policy. Emissions

with learning are 19.3% below the certainty case. Further, when a climate sensitivity above

4.26 is rejected at the 99.9% level, emissions are within 1% of certainty, even though fat tails

remain for all finite observations. Therefore, what is important for emissions policy is not

the existence of fat tails, but the mass of the fat tail, which is a function of the variance.

Learning is relevant since learning affects the variance.

25Note that the variance of λ is infinite. Figures 1, 17, and 18 plot h (λ;µ, S) along with a normal
distribution with mean µ and variance S.
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6 Sensitivity Analysis

The climate sensitivity is considered a major source of uncertainty in integrated assess-

ment models (Kelly and Kolstad 1999b). Nonetheless, other sources of uncertainty also

exist, especially the level and convexity of damages (Weitzman 2009) and the discount fac-

tor (Nordhaus 2008). Higher or more convex damages or a discount factor closer to one all

increase the benefits of abatement. We therefore consider a representative sensitivity analy-

sis, decreasing the pure rate of time preference from 0.05 to 0.03, or alternatively increasing

β to 0.97.

Figures 19-21 graph the mean optimal emissions for the high discount factor case. Con-

trasting Figures 7 and 19, we see that optimal emissions are lower with the higher discount

factor, as expected. Optimal emissions under certainty in the initial period fall by 24.33%

when the discount factor increases from 0.95 to 0.97. Emissions under learning and no

learning fall by 39.63% and 35.37%, respectively, when the discount factor increases.

Since damages are potentially greater, optimal insurance also increases. Table 6 indicates

current emissions under no learning are 47.31% lower than emissions under certainty for

the high discount factor case, versus 38.31% for the low discount factor case. Similarly,

emissions under learning are 35.62% lower under learning than emissions under certainty

for the high β case, versus 19.3% for the low β case. Although damages are potentially

greater, learning becomes somewhat less important, since the high discount factor means

large emissions reductions are optimal for a wide range of outcomes of the learning process.

Learning reduces the insurance premium by only 24.71% in the high β case, versus about

50% in the low β case.

Both partial and full learning are slightly slower for the high β case. Kelly and Kolstad

(1999b) prove that more restrictive climate policies slow learning because the climate change

signal is less pronounced amidst the noisy weather. Table 6 shows that this effect is small,

however. The mass of the fat tail is 1.4% in 2010 when β = 0.97, versus 1.3% when β = 0.95.

The 95% confidence interval is [2.37, 3.31] in 2015 when β = 0.97 versus [2.39, 3.30] when

β = 0.95. Although learning is slightly slower, emissions under learning converges faster to

perfect information when β = 0.97. Table 6 and Figure 19 indicate emissions under learning

converges to within 1% of emissions under certainty in 7 years, versus about 17 period when

β = 0.95.

Overall, sensitivity analysis indicates that if the discount factor is closer to one or damages

are greater or more convex, the main results remain. Fat tails are initially policy relevant,

with a large insurance premium, learning significantly reduces the insurance premium, and
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learning is fast in that the fat tail is rejected quickly, although significant uncertainty remains

for decades, that uncertainty is not relevant for optimal policy.

7 Concluding Remarks

In this paper, we study the effect of a possible high climate sensitivity on near term

optimal climate change policy, accounting for learning and uncertainty in the climate system.

We find three major results. First, fat tails are initially policy relevant in that near term

GHG emissions policy is much more restrictive when the planner accounts for fat tailed

uncertainty in the climate sensitivity (a 38% reduction in emissions). Second, when the

planner accounts for learning, the near term emissions reduction falls by half to only 19.3%.

Third, although full learning is slow, learning quickly reduces the mass of the fat tail. Optimal

emissions policy is much more sensitive to the mass of the fat tail than the uncertainty in

the prior around the mean. Therefore, optimal emissions policy converges quickly to perfect

information, even though some uncertainty remains for decades.

The planner knows values of the climate sensitivity in the tail of the prior distribution will

be rejected quickly at a high level of confidence if the true climate sensitivity is moderate. If

the climate sensitivity is high the planner can quickly reject still higher values, and quickly

adjusts emissions to get back on the optimal temperature trajectory. The planner has an

option to essentially purchase climate insurance: by paying to limit GHG emissions today,

the planner prevents GHG concentrations from rising, which in turn prevents the possibility

of very high temperature changes. Without learning, the planner takes out a significant

amount of insurance. However, with learning the planner insures about 50% less. First,

learning quickly rejects values of the climate sensitivity in the fat tailed part of the prior

distribution, if the true climate change is moderate. Second, the planner has time to adjust

emissions to keep the economy on the same GHG stock trajectory. Climate insurance under

learning in most cases falls to less than 1% after about 17 years as the planner reduces the

mass of the tail end of the distribution and the remaining uncertainty is not important for

emissions policy.

Several caveats are in order. First, for computational reasons, our model of the cli-

mate system is highly simplified. For example, we do not include a separate ocean layer.

Nonetheless, we computed an optimal policy assuming the ocean temperature is constant,

but simulated the model and learning with an ocean layer. The results are not much different

since learning here is about isolating the upward trend in the atmospheric temperature from
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the stochastic weather shocks. The ability of learning to do so is only marginally affected

by the ocean and other climate processes with long lags, since the ocean temperature is

essentially constant on a year to year basis. Thus our results are robust to the addition of

longer lags to the climate model.

Second, we consider only a single uncertainty, the climate sensitivity. Climate change has

many uncertainties, including the parameters of the damage function, the heat capacity of

the ocean, etc. In general, multiple simultaneous uncertainties slows learning. It is unclear,

however, how much the partial learning we consider here would slow.

Third, our model has no irreversibilities, tipping points, etc. The existence of irreversibil-

ities makes the planner much more cautious, which increases insurance with or without

learning. Learning would certainly still reduce climate insurance in this case, but by less as

the planner may not be able to correct a mistake of initially over-emitting. We leave this

interesting extension to future research.

Fourth, in our model the planner estimates climate feedbacks using current data. If the

climate is subject to regime shifts which occur in the far future, then it might be difficult

to learn about the existence of regime shifts today. However, if the process which causes

the regime shift is observable today, then our model still applies. Suppose for example, the

climate sensitivity is different if the polar ice caps melt as sunlight no longer reflects back

into space as efficiently (the albedo effect). If one can estimate the albedo effect by observing

changes in ice cover and changes in temperature, then the planner can learn the albedo effect

before a regime shift to a world without polar ice caps occurs.

Regardless, our main results are likely robust to any of these extensions. Fat tails matter

for climate policy, even if the distribution has a truncation point. Nonetheless, we show that

learning significantly reduces the influence of fat tails, especially over the near term. Given

these results it is important for policy makers to maintain policy flexibility, and to stand

ready to quickly adjust the emissions policy as new information arrives.

Finally, our results have interesting potential implications for recent research which finds

fat tailed uncertainty in other contexts (equity market returns, banking crises, etc.). Fat tails

in other contexts is typically modeled as an exogenous property of the return distribution

rather than an endogenous implication of parameter uncertainty. Our results show that if the

exogenously imposed fat tails are in fact the result of parameter uncertainty, then learning

has the potential to reduce fat tailed uncertainty over time, which limits the risk premium

of fat tailed uncertainty. We leave this interesting possibility to future research.
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8 Figures and Tables

State Variables
k Productivity adjusted capital stock per capital
m GHG concentration over preindustrial level
T Atmospheric temperature
µ Mean estimate of feedback parameter
S Variance of the prior distribution of feedback parameter

Control Variables
E GHG emissions
k′ Gross investment

Random Variables
ν ′ Weather shock
β1 Feedback parameter

Table 1: Variable definitions.

Parameter Description Calibrated Value
β Discount factor 0.952
σ Coefficient of risk aversion 1.5
ψ Capital share 0.402
ǫ Emissions share 0.0057
δk Capital depreciation rate 0.046
η Population growth rate 0.011
φ Productivity growth rate 0.018
δm GHG stock decay 0.0083
b1 Damage function parameter 0.003
b2 Damage function parameter 2
γ Initial emissions intensity (GtC/trillion 2005 $) 4.66
MB Preindustrial GHG concentrations (GtC) 596.4
α Heat capacity of the ocean 0.22−1

Γ Preindustrial temperature -0.4607
Ω Forcing parameter (W/M2) 4.39
σν Standard deviation of weather shocks 0.11
max∆T2× Maximum temperature change 26.83
ζ Heat transfer from atmosphere to ocean 0.05
τ Heat transfer from ocean to atmosphere 0.30

Table 2: Calibrated parameter values.
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State Variable Initial Value Units
K 137 Trillions of 2005 dollars
m 1.3563 Fraction relative to preindustrial
T 0.731 °C above preindustrial
µ 0.65 Watts per square meter (W/M2)√
S 0.13 Watts per meter squared (W/M2)

Table 3: Initial conditions corresponding to 2005. Dollar units are adjusted for purchasing
power parity. Initial values for K, m, and T are from Nordhaus (2008). Initial values for µ
and S are from Roe and Baker (2007).

Test 99% 99.9% Full
First reject, not subse-
quently not rejected

8.99 14.58 85.35

First reject, not subse-
quently not rejected, with
ocean

15.84 24.39 110.52

First reject 6.86 10.43 71.06
First Reject, with ocean 11.18 17.43 94.94

Table 4: Expected learning time in years conditional on current information. Expected
number of years until the hypothesis ∆T2× ≥ ∆T ∗

2× + 1.5 is rejected at the given confidence
level, where ∆T ∗

2× is the true value. Column 4 is the expected number of years until full
learning is complete.
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Year 2005 2010 2015 2020 2050
Emissions: Learning (% vs certainty) 19.30 7.68 3.69 1.42 -0.49
Emissions: No learning (% vs certainty) 38.31 46.3 48.17 48.02 45.72
Control rate: Learning (% vs no learning) 49.55 81.36 81.36 75.54 54.76
Carbon tax: Learning (% vs no learning) 23.44 40.71 45.50 46.72 45.96

Probability T ≥ 4.26 0.165 0.013 0.0002 < 10−6 < 10−6

95% confidence interval lower bound, ∆T2× 0.97 2.07 2.39 2.51 2.71
95% confidence interval upper bound, ∆T2× 7.09 3.57 3.30 3.19 3.00

Table 5: Difference in optimal emissions policy, learning, no learning, and perfect informa-
tion. The true value is the prior. The first two rows give the percent difference between
emissions under certainty and emissions under learning and no learning. That is the first
cell of the table indicates emissions under learning are 19.3% lower than emissions under
certainty. Rows 3-4 give the percent difference in policies under no learning and the policies
under learning. The last two rows give the progress of partial learning versus full learning.
All results are the mean of 150 simulations.

Year 2005 2010 2015 2020 2050
Emissions: Learning (% vs certainty) 35.62 1.54 0.26 -0.11 -0.24
Emissions: No learning (% vs certainty) 47.31 46.28 45.31 44.63 42.96
Control rate: Learning (% vs no learning) 11.99 38.08 34.22 31.42 25.07
Carbon tax: Learning (% vs no learning) 18.07 42.91 44.11 44.01 42.95

Probability T ≥ 4.26 0.165 0.014 0.0003 < 10−5 < 10−6

95% confidence interval lower bound, ∆T2× 0.97 2.05 2.37 2.5 2.69
95% confidence interval upper bound, ∆T2× 7.09 3.58 3.31 3.21 3.02

Table 6: Difference in optimal emissions policy, learning, no learning, and perfect infor-
mation, when β = 0.97. The true value is the prior. The first two rows give the percent
difference between emissions under certainty and emissions under learning and no learning.
Rows 3-4 give the percent difference in policies under no learning and the policies under
learning. The last two rows give the progress of partial learning versus full learning. All
results are the mean of 150 simulations.
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Figure 1: Prior PDF for the climate sensitivity. β1 ∼ N (0.65, 0.013).
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Figure 2: Mean learning time to reject ∆T2× ≥ ∆T ∗

2× +1.5°C at 1% and 0.1% critical values

as a function of the true ∆T2×. Average of 150 simulations for each value of ∆T ∗

2×.
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Figure 3: Mean learning time required to reject the hypothesis that ∆T2× ≤ 0.95 ·∆T ∗

2× and

∆T2× ≥ ∆1.05 · T ∗

2× with 95% confidence. Mean of 1200 simulations.
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Figure 4: Learning dynamics for the mean of the feedback parameter. The solid line is the

true value and is also the ideal case of learning when all weather shocks are zero.
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Figure 5: Posterior PDF for the climate sensitivity after 10 observations. The true value

equals the prior, simulation 5.
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Figure 6: Learning dynamics for the variance of the feedback parameter. The true value

equals the prior.
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Figure 7: Optimal emissions policy in gigatons (GT), true ∆T2× = 2.76. Mean of 1000 runs.
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Figure 8: Optimal emissions control rate, true ∆T2× = 2.76. Mean of 1000 runs.
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Figure 9: Optimal carbon tax ($/ton), true ∆T2× = 2.76. Mean of 1000 runs.
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Figure 10: Temperature, degrees C above preindustrial, true ∆T2× = 2.76. Mean of 1000

runs.

32



2020 2040 2060 2080 2100 2120 2140
3

4

5

6

7

8

9

10
Em ission s (GT ), ∆T2x = 2, mean of 1000 runs

year

E t

 

 

Learning

Perfect Information

No Learning

Figure 11: Optimal emissions policy (GT), true ∆T2× = 2. Mean of 1000 runs.
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Figure 12: Optimal emissions control rate, true ∆T2× = 2. Mean of 1000 runs.
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Figure 13: Temperature, degrees C above preindustrial, true ∆T2× = 2. Mean of 1000 runs.
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Figure 14: Optimal emissions policy (GT), true ∆T2× = 5. Mean of 1000 runs.
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Figure 15: Optimal emissions control rate, true ∆T2× = 5. Mean of 1000 runs.
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Figure 16: Temperature, degrees C above preindustrial, true ∆T2× = 5. Mean of 1000 runs.
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Figure 17: Posterior PDF of ∆T2×, true value is 2.76 after 10 periods.
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Figure 18: Posterior PDF of ∆T2×, true value is 2.76 after 50 periods.
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Figure 19: Optimal emissions policy in gigatons (GT), true ∆T2× = 2.76, β = 0.971. Mean

of 1000 runs.
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Figure 20: Optimal emissions policy in gigatons (GT), true ∆T2× = 2, β = 0.971. Mean of

1000 runs.
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Figure 21: Optimal emissions policy in gigatons (GT), true ∆T2× = 5, β = 0.971. Mean of

1000 runs.
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