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Participants 
 

● Professor Konrad Kording - Penn Integrated Knowledge Professor, University of 
Pennsylvania 

● Joseph Carlsmith - Research Analyst, Open Philanthropy 
 
Note: ​These notes were compiled by Open Philanthropy and give an overview of the major 
points made by Prof. Kording. 

 
Summary 
 
Open Philanthropy spoke with Prof. Konrad Kording of the University of Pennsylvania as 
part of its investigation of what we can learn from the brain about the computational 
power (“compute”) sufficient to match human-level task performance. The conversation 
focused on different ways of generating brain-based compute estimates.  
 

Approaches to generating estimates 
 
We can distinguish between the goal of replicating the inputs and outputs relevant to a 
particular task, and replicating the internal dynamics involved in a particular human brain 
performing that task. The former may be substantially easier. We know that for a lot of 
tasks (e.g., chess), there are specialized solutions that can be employed using limited 
hardware.  
 
In general, though, we don’t know how hard being human is, as a computational problem. 
Here are some different approaches to generating compute estimates.  
 
Low-end estimate based on vision 
 
The human brain dedicates roughly half of its hardware to processing vision (this can be 
seen by looking at diagrams created by David Van Essen). And we can solve a lot of the 
vision problem (e.g., detecting objects, segmenting scenes, storing information) using very 
modest compute. Indeed, computers have long been much better than humans at memory 
storage. 
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There are other tasks we don’t know how to do (e.g., high-level decision-making), and 
vision might be comparatively easy. Still, there is a history of changing our conception of 
how hard the problems the brain solves are. For example, we used to think that multiplying 
large numbers and playing chess were strong signs of intelligence, but now we know that 
these tasks can be done fairly easily with the right hardware. If half of the brain is vision, 
maybe the other half isn’t particularly difficult either, and the brain’s full task-performance 
can be replicated with today’s hardware.  
 
It’s also possible, though, that learning is the main challenge, and that most of the compute 
burdens come from the brain’s need to update itself every second, or every couple of 
milliseconds, rather than from the processing involved in performing already-learned 
tasks. That said, artificial systems might need to do less self-updating than the brain does. 
 
Estimate based on spikes through synapses 
 
You have roughly 10​11​ neurons in your brain, each with roughly 10​3​ synapses, and each 
firing at roughly a 10 Hz rate. If we assume that each neuron is performing a very trivial 
computation -- e.g., multiply each input by some number, and then add them up -- then this 
suggests roughly 10​15​ multiplications per second. This is a manageable compute burden. 
 
High-end estimate  
 
Examination of neurons reveals that they are actually very non-linear, and the 
computations involved in plasticity probably include a large number of factors distributed 
across the cell. In this sense, a neuron might be equivalent to a three-layer neural network, 
internally trained using backpropagation. In that case, you’d need to add another factor of 
roughly 10​5​ to your compute estimate, for a total of 10​20​ multiplications per second. This 
would be much less manageable.  
 
Overall uncertainty 
 
The difference between the estimates generated by these different approaches is very large 
-- something like ten orders of magnitude. It’s unclear where the brain is on that spectrum. 
 

Specific sources of compute 
 
Learning 
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Prof. Kording thinks that learning in the brain requires the same amount of compute as 
processing. If you have a compute graph, going forwards and backwards comes at roughly 
the same cost. 

 
Glia 

 
Glial cells would imply a factor of two in required compute, but we are likely to be so many 
orders of magnitude wrong already that incorporating glia will not make the difference.  
 

Estimates based on V1 
 
There is a traditional view in systems neuroscience that each brain area does something 
pre-assigned and simple. E.g., V1 detects edges, V4 pulls out colors and curvature, etc. But 
this view is dying at the moment.  
 
It was always suspicious on theoretical grounds. The fact that you know so much, about so 
many types of things, is in conflict with the view that each specific brain area is simple, as 
this view does not explain where all of the information available to you comes from. 
 
But it’s also empirically wrong. If you look at the literature, when you take a type of signal 
that matters to animals and looks for it in the brain, you find it everywhere. For example, 
you can find movement signals and expectations in the primary visual cortex, and rewards 
explain more of the variance in the primary motor cortex (the “movement area”) than 
movement. Basically, it’s all a complete mess.  
 
It’s true that simple models of V1 can describe 30 percent of the variance in V1’s activity. 
But you can describe half of the variance in the activity of your transistors just by realizing 
that your computer is turned off at night. It could be that some V1 neurons are silent until 
certain image features cause them to perform a certain type of analysis, but in our 
ignorance, we assume that they just detect local edges.  
 
Of course, there’s some specialization. Sound explains more of the variance in auditory 
cortex than in visual cortex. But the specialization isn’t simple. It’s just easier to publish 
papers saying e.g. “X is the brain area for romantic love,” than e.g. “here are another ten 
variables X region is tuned to.” 
 
Defining vision 
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“What things are” isn’t the only question at stake in vision. You want answers to questions 
like “can I grasp this water bottle? Can I hold it there?”. Indeed, there are a vast number of 
questions that we want to be able to ask and answer with vision systems, and the “solution” 
to vision will depend on the exact thing that other parts of the brain need from the visual 
system. It’s not an easily definable space, and the only way to figure it out is to build a 
system that fully learns all of the relevant pieces.  
 

Upper bounds 
 
If you want upper bounds on required compute, you can look at the parts list of the 
computing elements in the brain, the noisiness of which will put physical limits on the 
amount of computation they can do. This might result in very high estimates. For example, 
it might say that every ion channel does a bit roughly every ten milliseconds.  
 
This approach doesn’t necessarily rule out molecules and proteins as possible avenues of 
computation. However, some molecules may equilibrate so fast that you can replace them 
with a variable that describes their average state (e.g., mean field theory is applicable).  
 
You can’t do this across a neuron: there are NMDA spikes and other complexities. So the 
question is: what is the compartment size where local averaging is possible? People 
disagree. Some think the brain has organized as itself to be mean-field modelable, but they 
have never shown much evidence for that. Still, at some length-scale (say, ten micrometers) 
and some time-scale (much faster than electrophysiology), everything will equilibrate.  
 

Best guesses 
 
Prof. Kording’s hunch is that in order to replicate firing decisions in neurons, you’d need to 
break the neuron into pieces of something like ten microns (this would hundreds, maybe 
thousands of compartments per neuron). This hunch is grounded in a belief that neurons 
are very non-linear.  
 
Here is one non-standard argument for this degree of non-linearity in neurons. Adjusting 
synapses in helpful ways requires computing how that synapse should adjust based on its 
contribution to whether the neuron fires. But this computation applies in basically the 
same way to individual ion channels in the cell: e.g., if the brain can signal to the synapse 
how to adjust in order to improve neuron firing, it can do the same for ion channels, at no 
additional cost. This makes Prof. Kording thinks that the brain is optimizing both.  
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However, current techniques are very bad at measuring ion channel plasticity. 
Neuroscientists don’t tend to focus on it for this reason. 
 
There are considerably more ion channels than synapses, and ion channels change how 
synapses linearly and nonlinearly interact with one another. This suggests an uglier 
computational space.  
 

Opinions in the field 
 
Some neuroscientists think that the brain is a deep learning system. They generally believe 
that neurons are trivial. Others, such as some experimentalists, think that neurons are 
extremely complicated. 
 
In general, people are often willing to take a philosophical position, without much evidence, 
if it makes their research more important. 
 

All Open Philanthropy conversations are available at 
http://www.openphilanthropy.org/research/conversations 
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