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1 Motivation 

The dominant paradigm today for developing artificial intelligence systems that can make robust and              
flexible decisions in the real world is based on optimization: the guiding principle for an intelligent agent in                  
choosing how to act is the long-term minimization of a pre-specified global loss function, and the power                 
and efficiency of the optimization process determines the degree of intelligence that is obtained. This is                
also the main source of concern for long-term AI safety challenges. When the objectives are specified                
manually by human engineers, careless objective design can produce a system that, subtly or overtly,               
abuses or misinterprets its intended role and produces undesirable behavior. 

A plausible argument for the severity of this issue is that, as the environment in which the AI agent is                    
situated becomes more complex, the number of different ways to misinterpret or abuse a simple               
hand-specified reward function increases exponentially. However, because the degree of abuse very            
likely depends on the complexity of the environment, the many facets of this problem are likely to not be                   
apparent unless experiments are conducted in environments of suitable complexity. 

We therefore propose an ​empirical ​exploration of the consequences of misspecified objectives. Our goal              
is to substantiate the theoretical analysis of what might happen in the future for a superintelligent agent,                 
with a practical analysis of how the initial signs of these issues arise in real robots today and to what                    
extent potential mitigation strategies can address these issues. 

2 Research Questions 
Our research questions are empirical, and bridge the gap between robotics and AI safety: 

(1) To what degree do current and near-term future optimization-based algorithms have the capacity to               
abuse or misinterpret simple hand-specified instructions in real-world lifelong learning scenarios? 

(2) What other problems, beyond those identified in the AI safety literature, emerge as self-improving               
robots deal with real-world environments in a lifelong learning setting? 

(3) How well do current mitigation strategies, such as uncertainty estimation and inverse reinforcement              
learning, address these problems? What new strategies can we develop to enable practical and effective               
human oversight of lifelong learning systems? 

(4) How overt or covert are these problems, and are there simple and readily identifiable cues we can use                   
to detect when they occur? 

3 Technical Trajectory 
We propose to explore the behavior of continuously learning AI agents in the context of lifelong learning                 
experiments with real robotic systems, using state-of-the-art deep reinforcement learning algorithms. 



3.1 Reward Hacking on Real Robots 

To begin, we will explore several lifelong learning robotic systems, and analyze how objective              
misspecification in practice can produce subtle or overt undesirable behavior. We will explore several              
types of robotic systems, potentially including robotic manipulators and mobile robots. Lifelong learning             
manipulation experiments may include: robots learning to pick and place objects, arrange tabletop             
settings, and performing basic tasks such as cleaning. For mobility, tasks may include locating or               
delivering objects and mapping an outdoor environment. Continuous self-improvement in these settings            
can be achieved with either model-free, goal-directed reinforcement learning, or model-based learning,            
where a predictive model of the world is constructed from the robot’s experience. We will study both                 
possibilities, building on our ongoing work [2, 3, 8]. Our preliminary work has already produced the                
capability to conduct laboratory-scale experiments with continual lifelong learning for robotic manipulation            
(pushing objects via video prediction) and robotic mobility (avoiding obstacles via trial-and-error), and we              
expect to build up substantially more complex capabilities in the first year of this research. 

In parallel to the design of these lifelong learning systems, we will develop a set of protocols to study                   
symptoms of objective misspecification and undesirable bias. We will explore two approaches, one             
focused on controlled experimentation and the other on open-world studies. For the first, we will               
purposefully set up tasks where objective misspecification is likely, to study intuitive mitigation strategies              
suitable even for naive human operators. Examples might include a grasping system being asked to               
grasp a fragile object, or a mobile robot being asked to deliver a container of liquid, in a case where                    
emptying out the container first makes the task easier (but useless). For the second, we will conduct                 
open-ended studies where the learning systems operate continuously in the real-world, potentially            
interacting with real humans, and study the outcomes. These studies will be larger in scale, and will likely                  
take place further along in the project, preceded by smaller pilot studies. 

Aside from overt objective misspecification, we will also study how the training data distribution affects the                
behavior of the system. In the same way that the past experiences of humans impacts our reactions,                 
biases, and prejudices, the data that a lifelong learning system collects will inform its decisions. If this                 
data is biased, as is likely to be the case for a system that chooses on its own what to explore, its                      
decisions may exhibit idiosyncrasies. As an example, our recent large-scale grasping experiment [2]             
resulted in a robot that preferred overwhelmingly to grasp rubber erasers, for which it determined a                
successful strategy early on. We will work to systematize our study of these biases, potentially informing                
both future mitigation strategies and theoretical analysis, and understanding when they can be harmful. 

3.2 Bypassing Human Oversight on Real Robots 

Our experiments will test the implications of learning with human oversight when the robot optimizes a                
pre-fixed reward function. Our goal here is to analyze to what extend the robot develops strategies over                 
time for bypassing this oversight in order to better optimize its reward function. 

AI safety work hypothesizes that robots will not only ignore oversight, but even actively try to deter it. We                   
want to know what these strategies might look like for a real task, how much interaction time it takes to                    
develop them, how they can be recognized, and how generalizable they are across people. To that end,                 
we will purposefully physically intervene in the robot’s task in our scenarios in two conditions: stopping the                 
robot, or guiding it to perform the task properly. 



Further, we will also explore what ​novice users of the system attempt to do as oversight -- what kind of                    
language instructions they give, what non-verbal information they convey (e.g. gestures), what physical             
interaction strategies they employ. Even though our naive robot would not initially respond to most of                
these channels, this data will be really useful because it will reveal what are natural oversight reactions                 
people have. We will then build on these findings to design new, intuitive oversight mechanisms. 

3.3 Analyzing and Improving Mitigation Strategies 

Besides identifying pathological behaviors of lifelong learning systems and analysing the strategies that             
human users might use for mitigating such behaviors, we will also analyze and improve computation               
mitigation tools. To that end, we will study ​(a) uncertainty estimation for reinforcement learning, ​(b)               
autonomous reward acquisition methods, including inverse RL and other imitation techniques, and ​(c)             
decision-making algorithms that offer better insight and control into the learned decision-making process,             
including model-based and explainable control algorithms. These techniques will be rigorously validated            
on real-world platforms and, in the case of ​(b) ​and ​(c)​, with real human users. Whenever possible, we will                   
evaluate these methods in the context of the lifelong learning systems outlined above. 

4 Fit with Priorities 
This research meets the priorities of the program. We will soon see autonomous robots in the real world,                  
continuously learning from their experience. The only way we can obtain solid, reliable information about               
the potential pitfalls of such a deployment is by conducting representative real-world experiments.             
Therefore, a rigorous laboratory-scale exploration of these questions is important for identifying the most              
important AI safety problems to address within the next 5 years. Furthermore, we see this work as setting                  
a precedent for future empirical AI safety research, establishing best practices, protocols, and standards:              
even if future AI systems differ dramatically and unexpectedly from those we study in the near term, the                  
formulation and conduct of empirical safety experiments will carry on even if the specific findings do not. 

5 Technical Preparedness 
PIs Levine and Dragan have the right technical background and combination of expertise to undertake               
this research. PI Levine’s prior work includes the first successful end-to-end trained deep network policy               
for vision-based robotic manipulation skills [1], the first medium-scale experiment on collective deep             
robotic learning [2], and the first result on real-world robotic control based on direct video prediction [3].                 
This prior experience will enable his lab to construct viable self-improving robotic systems for the lifelong                
learning experiments described in this proposal. PI Levine also has extensive prior work on inverse               
reinforcement learning [4, 5, 6, 7], as well as uncertainty estimation for deep reinforcement learning [8]. 

PI Dragan’s work combines AI safety research, tackling theoretical problems for the agents of tomorrow,               
with human-robot interaction research, tackling the practical problems of robots today. Her prior AI safety               
work includes a technical formulation and equilibrium solutions for value alignment [9], a theoretical              
analysis of the off-switch problem [10], and an algorithm for autonomously alleviating side effects of               
misspecified objectives [11]. Her prior HRI work includes algorithms for robot transparency of intentions              
and objectives [12,13], for accounting for the ways in which robot actions influence human actions [14],                
and for learning objectives from rich forms of human guidance [15]. 
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