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The 20 billion neurons of the neocortex have a mere hundred thousand motor neurons
by which to express cortical contents in overt behavior. Implemented through a
staggered cortical “efference cascade” originating in the descending axons of layer five
pyramidal cells throughout the neocortical expanse, this steep convergence accomplishes
final integration for action of cortical information through a system of interconnected
subcortical way stations. Coherent and effective action control requires the inclusion
of a continually updated joint “global best estimate” of current sensory, motivational,
and motor circumstances in this process. I have previously proposed that this running
best estimate is extracted from cortical probabilistic preliminaries by a subcortical
neural “reality model” implementing our conscious sensory phenomenology. As such it
must exhibit first person perspectival organization, suggested to derive from formating
requirements of the brain’s subsystem for gaze control, with the superior colliculus at
its base. Gaze movements provide the leading edge of behavior by capturing targets of
engagement prior to contact. The rotation-based geometry of directional gaze movements
places their implicit origin inside the head, a location recoverable by cortical probabilistic
source reconstruction from the rampant primary sensory variance generated by the
incessant play of collicularly triggered gaze movements. At the interface between cortex
and colliculus lies the dorsal pulvinar. Its unique long-range inhibitory circuitry may
precipitate the brain’s global best estimate of its momentary circumstances through
multiple constraint satisfaction across its afferents from numerous cortical areas and
colliculus. As phenomenal content of our sensory awareness, such a global best
estimate would exhibit perspectival organization centered on a purely implicit first person
origin, inherently incapable of appearing as a phenomenal content of the sensory
space it serves.
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INTRODUCTION

“Given the presumption that the way we see the world evolved to
make the control of action as straightforward as possible, it is likely
that our phenomenal perception of the world is closely related to
the mechanisms we use to act upon it”

Michael Land (Land, 2012, p. R811).

Whatever a theory of consciousness might contain or propose,
it must provide an account of what it is that places us in a first
person perspectival relation to our phenomenal experience. So
central is this relation to the constitution of the conscious state
that it virtually defines it (Velmans, 1991; Merker, 1997). This
much at least is certain, without such an account a theory can-
not be adequate to the greater part of ordinary waking reality,
because in it we routinely experience the events of our lives.
The “we” here refers, of course, to the “first person” in ques-
tion. Neither self-consciousness nor a self-image is implied by
this usage; to be subject to phenomenal experience suffices. To the
extent that any notion of self is consciously entertained, it shares
with other items or contents of consciousness the status of being

apprehended from a first person perspective. The latter does not,
in other words, presuppose self images or self-consciousness, but
they presuppose it.

To be explored in what follows is the proposition that the first
person perspective, and with it consciousness, is best understood
in relation to the requirements of action control (Merker, 2005,
2007; Land, 2012), and has its origin in them. It is there that one
finds the key to the kinds of content that enter the conscious
state (Morsella, 2005) and also the functional grounds for the
peculiar tripartite nested format in which the first person per-
spective of our sensory consciousness is cast (Merker, 2007, 2013).
In this endeavor we shall be concerned almost exclusively with
sensory consciousness, and visual sensory consciousness in par-
ticular. This is not because other domains of conscious contents
are without interest, but because nowhere is the first person per-
spective more concretely defined, more instructively instantiated,
or more empirically accessible than in immediate phenomenal
sensory experience.

Sensory experience is typically treated on the afferent side of
cerebral operations, concerned with how the brain interprets and
makes sense of the barrage of irregular spiking activity arriving
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on its sensory nerves. Action control, on the other hand, is typi-
cally treated on the efferent side, presupposing that the world has
been deciphered, and one is ready to act upon it. The apparent
contradiction of making action control the key to sensory expe-
rience stems from conflating sensory operations—the ramified
activity of the cortical sensory hierarchies—with sensory expe-
rience. The latter is conscious, and the phenomenal objects that
populate it bear no trace of the massive multi-stage operations the
cortex mounts in order to strip them of the multiple dimensions
of inherent ambiguity encumbering the brain’s primary afference
(see Merker, 2012 and references therein). Sensory objects present
themselves to our consciousness as finished products of the cor-
tical hierarchies, delivered on completion of their labors (which
accordingly may take place unconsciously).

There are, moreover, good grounds for believing that the cor-
tex employs a probabilistic data format for its many internal oper-
ations (Hinton and Sejnowski, 1983; Földiák, 1993; Anderson and
Van Essen, 1994; Zemel et al., 1998; van Rossum et al., 2002;
Pouget et al., 2003), and that our sensory world is a running global
best estimate based upon those probabilistic cortical preliminaries
(Merker, 2012). The cortex, furthermore, has reason to avoid pre-
cipitating final estimates within its own operations (van Rossum
et al., 2002; Merker, 2012; see Beck et al., 2008 and Ma et al., 2006
for an example). It is perfectly feasible, then, to entertain the pos-
sibility that the implementation of our sensory awareness takes
place in structures among efferent targets of cortical operations,
provided they have the requisite representational capacity and are
in receipt of direct projections from a suitable set of cortical areas.
What such an arrangement might look like when pursued into
the targets of descending cortical pathways will be explored in the
sections that follow.

THE EFFERENCE CASCADE DEFINED
It is an all too common misconception that cortical control
over behavior is exercised principally through direct projections
from primary motor cortex to the motor neuronal apparatus of
lower brain stem and spinal cord, and that the rest of the cor-
tex influences behavior indirectly, via its typically multisynaptic
transcortical connections to primary motor cortex. But no corti-
cal area is dependent on the motor cortex for its efference1 because
every cortical area has direct subcortical projections descend-
ing from pyramidal cells populating its lower two cortical layers
(Diamond, 1979; Jones, 1984; Thomson and Lamy, 2007).

One contingent of these descending projections issues from
cortical layer VI to “near” (often reciprocally connected) subcor-
tical structures such as the thalamus and the claustrum [reviewed
in Thomson (2010)]. In the thalamus they exert a merely mod-
ulatory influence on their target structures via small boutons

1Unless, of course, a cortical area needs to utilize the highly specialized
motoric capacity for which primary motor cortex appears to have evolved,
the control of that fraction of behavior that consists of the skilled (learned)
and detailed patterning of movements of distal extremities, or effectors such
as those involved in vocal learning (Heffner and Masterton, 1975; Lawrence
and Hopkins, 1976; Passingham et al., 1978; Kuypers, 1981; Karni et al., 1998;
Rathelot and Strick, 2006; Okanoya and Merker, 2007; Brown et al., 2008;
Lemon, 2008).

synapsing on distal dendrites and engage the thalamic reticu-
lar nucleus (likewise modulatory) by collaterals when passing
through it (Guillery, 1995; Erişir et al., 1997; Sherman and
Guillery, 1998; Prieto and Winer, 1999; Rouiller and Welker,
2000; Li et al., 2003; Wang et al., 2006). In the setting of recip-
rocal corticothalamic connectivity this large population of layer
VI cells presumably is engaged in “tuning” neural activity on its
way up to the cortex (cf. Ferster and Lindström, 1985; Martin and
Somogyi, 1985; Li and Ebner, 2007; da Costa and Martin, 2009),
whether that activity originates in thalamic sensory relay nuclei
or higher order ones.

It is cortical layer V, however, that contains pyramidal cells
engaged in exporting cortical information to distant targets, and
therefore can be expected to convey a final summary of cortical
operations to the rest of the brain. It supplies numerous diverse
and far-flung subcortical targets in basal ganglia, basal forebrain,
diencephalon, midbrain, pons, medulla, and spinal cord with
typically high-security driving synaptic input via large boutons
that synapse on proximal dendrites (Kuypers, 1981; Jones, 1984;
Guillery, 1995; Sherman and Guillery, 1998; Rouiller and Welker,
2000; McHaffie et al., 2001; Winer, 2006; Lemon, 2008). Every
cortical area issues such descending projections. Their precise sub-
cortical targets depend on the cortical area in question. In this
laminar sense, then, all of cortex can be said to have a motor func-
tion (Diamond, 1979; cf. also Jones, 1984, p. 522; Campbell, 1905;
Bolton, 1910; Swanson, 2000).

Not all long descending cortical projections terminate in
motor related structures, however. Some innervate brainstem
sensory structures such as the trigeminal sensory and dorsal col-
umn nuclei (Kuypers, 1981). Here the term “efference cascade”
will therefore be used as a comprehensive and functionally neutral
term for the entire diverse system of descending (extra-telencephalic)
cortical layer V projections. It originates in large pyramidal cells
concentrated to lower cortical layer V.

These layer V pyramids exceed all other cortical cell types in
the comprehensiveness with which they sample activity across
cortical layers (Larkum, 2013). Their basal dendrites often extend
into cortical layer VI below them (e.g., Dégenètais et al., 2002
Figure 10; Ledergerber and Larkum, 2010, Figure 12), and their
robust and typically branching apical dendrites extend as promi-
nent tufts into the supragranular layers including layer I. Special
conductance and spike initiation mechanisms operate to con-
nect this tuft compartment with the basal dendrite and axon
initial segment compartment via action potential backpropaga-
tion (Amitai et al., 1993; Yuste et al., 1994; Larkum et al., 1999,
2004; Larkum, 2013). They thus appear ideally disposed to issue
a comprehensive summary to the rest of the brain of the state of
the local patch of cortex in which they reside.

It was in this sense that Douglas and Martin summarized their
role as follows, “The pyramidal cells of layer 5 that drive subcor-
tical structures involved in action (e.g., basal ganglia, colliculus,
ventral spinal cord) decide the output of the cortical circuits”
(Douglas and Martin, 2004, p. 443). The axons of these pyrami-
dal cells do not send collaterals to the thalamic reticular nucleus
even when passing through it on their way to the dorsal thala-
mus (Jones, 2002). This, in present terms, is in keeping with their
operational role as conduits for the running record of completed
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cortical labors rather than earlier operational stages requiring
tuning of activity arriving at cortex from subcortical sources.

The morphological and physiological specializations of layer
V pyramidal cells ensure that the spiking activity of their axons
comes to reflect the overlap in time of activity across cortical
layers (Jones, 1998; Douglas and Martin, 2004; Larkum, 2013,
box 1, Figure 1; Thomson et al., 2002). They appear to be par-
ticularly well disposed, in fact, to reflect conjoint activation of
cortical feedforward and feedback projections in their activity
(Larkum, 2013). This circumstance carries special significance for
the present topic, because a number of lines of evidence suggest
that such conjoint activation is a condition for cortical informa-
tion to enter consciousness (Lamme and Spekreijse, 2000; Bullier,
2001; Merker, 2004, p. 566 and Figure 4; Lamme, 2010; Boly et al.,
2011).

It is conceivable, therefore, that somewhere beneath the cortex
there is a target or set of targets of these cortical layer V pyrami-
dal cell axons in which their “reporting” on the cortical pattern of
conjoint activation of feedforward and feedback activity becomes
conscious, after passing a threshold in that subcortical terminus.
Combined with the reasons alluded to in the previous section
for provisionally excluding the cortex itself as a venue for pre-
cipitating the sensory estimates that yield phenomenal perceptual
objects (a full rationale is presented in Merker, 2012), it seems
worth exploring the distinct possibility that the brain’s mecha-
nism of consciousness might hide among targets of cortical layer
V descending projections.

PICKING A PATH THROUGH THE WILDERNESS
The massive many-to-few convergence by which the efference
cascade connects vast expanses of cortex to compact subcor-
tical nuclei is an appropriate design feature for a system that
derives concise final estimates from cortical probability distribu-
tions for purposes of action control. Given that no more than
roughly a hundred thousand motor neurons must execute every
behavior influenced by some 20 billion cortical neurons, a steep
convergence ratio is a systemic necessity. This fits well with the
modest representational requirements of final estimates com-
pared to their capacity-intensive probabilistic preliminaries (Ma
et al., 2006; Beck et al., 2008). Here, however, we are not con-
cerned with just any estimate, but with the brain’s global best
estimate of its current circumstances, proposed to fill our con-
sciousness with the world we experience around us (Merker, 2012,
2013). Do compact subcortical nuclei have the neuron numbers
and representational capacity to accomodate such content?

A calculation based on a well-studied aspect of phenomenal
sensory content, namely visual acuity as a function of eccen-
tricity, discloses that some 164,000 picture elements (“pixels”)
suffice to render a monochromatic, monocular, full-field human
visual percept at full psychophysical (i.e., phenomenal; see Rock,
1997) resolution (Rojer and Schwartz, 1999; see also Lennie, 1998,
p. 900, and Watson, 1987). By rough extrapolation from this
measure, a few million neurons employed as representational ele-
ments should readily accomodate the full compass of multimodal
human sensory awareness (for additional detail, see Merker, 2012,
p. 49). This in turn means that a number of the way stations of the
efference cascade, such as the superior colliculus in the midbrain

and the mediodorsal nucleus as well as the pulvinar complex of
the higher order thalamus have the requisite neuron numbers to
do so (for cell counts, see Théoret et al., 2001; Abitz et al., 2007;
Chalfin et al., 2007).

At least on this score, then, the search for an implementation of
a mechanism of sensory consciousness among the subcortical tar-
gets of the efference cascade can proceed without embarrassment.
In so doing, the generic structural characteristics of phenomenal
sensory consciousness can be used to canvass the tangled anatomy
of the search space for candidate implementing mechanisms
(Merker, 2012, 2013). So far this phenomenal resource remains
curiously under-exploited in consciousness theory2, though it
would seem to be a necessary requirement for any matching of
candidate neural mechanisms to the operational requirements of
the function they are conjectured to implement.

One of the more conspicuous structural characteristics of sen-
sory experience is the nested arrangement in which it comes to
us. The world we inhabit is laid out before us in consciousness as
a three-dimensional panorama surrounding a central object, our
body, from which we look out upon the world through an empty
opening in its upper face region (Mach, 1897; Merker, 2007,
2013). The key claim of the present proposal is that this nested
egocentric organization of sensory consciousness is inherently
related to and derived from the needs of action control in that
it simplifies the conversion of locational differences in phenom-
enal space to directional displacements in our most ubiquitous
category of behavioral output, namely the targeting movements
of spatial orienting behavior (Hassler and Hess, 1954; Sokolov,
1963; Johansson et al., 2001; Land, 2012). Subsequent sections
will expand on this theme, but for now a minimal sketch of
the rudiments of an egocentric orienting system is provided in
Figure 1.

Gaze or orienting movements account for a greater share of
behavioral variance than any other kind of movement. They typ-
ically provide the temporally leading edge of all instrumental acts
by landing on the targets of those acts ahead of the implementing
body part (for detail, see Merker, 2012, pp. 46–47). The strategy
applies all the way down to the split-second details of manipula-
tive activity (Johansson et al., 2001). Arm and fingers follow the
agile movements of the gaze as if attached to it by elastic bands.
The coupling of arm or hand to the gaze appears to be the brain’s
default mode of operation (Gorbet and Sergio, 2009; Thaler and
Todd, 2009; see also Lünenburger et al., 2001; Reyes-Puerta et al.,
2010; Crawford et al., 2011), and so called gain fields (Andersen
and Mountcastle, 1983; Chang et al., 2009) can be likened to the
“elastic bands” in the analogy just used.

These leading gaze or orienting movements accordingly can
be regarded as the brain’s principal output. To a first approxi-
mation they consist of rotary displacements of the eyes in their

2One possible reason for this neglect is described in the final section of Merker
(2013). In brief, it may betoken a lingering and entirely tacit influence of naive
realism on theorizing such that this world that surrounds us is not recog-
nized as a content of consciousness but is mistaken for the actual physical
universe itself. Such misattribution eliminates a major portion of the contents
of sensory consciousness from consideration vis-a-vis consciousness theory,
whose purview accordingly shrinks to matters of our “inner life,” thinking,
self-consciousness, qualia, and the like.
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FIGURE 1 | Polar panorama of Cardiff Castle surrounding an observer

head, to illustrate the use of an egocentric neural representation of

ambient space in the control of rotational displacements of eyes and

head during orienting movements. Only a head movement is depicted.
For inclusion of eye movements in such a scheme, see Land (2012). The
physical universe is rendered in gray scale, while the contents of the neural
reality model (shown filling the physical head only to gain image resolution)
are rendered in color and raster. Colored sector: The visible portion of the
surroundings representated in the neural reality model, anchored to the
perceptual egocenter inside the reality model’s head representation
(rastered, because not within the field of view). Rastered sector: The
remaining multimodal space representation of the neural reality model,
tacitly present for vision in the form of sectors of ambient space that may
be brought within the field of view by gaze displacements. In such a
scheme perceived angular distance to a potential orienting target matches
the required rotational displacement of the physical eyes and head (gaze),
symbolically indicated by the line joining the two angular displacements.
The execution of such a movement is experienced as a movement of one’s
(i.e., neural model) head only, while one’s (i.e., neural model) surroundings
remain stationary, though the physical surroundings undergo wholesale
displacement relative to the sensory receptors fixed to the moving physical
eyes and head in the course of that movement. The tacit representation of
the surroundings (rastered) accordingly must undergo a corresponding
compensatory displacement in the neural reality model, leaving the
rastered sector “locked,” as it were, to the physical surroundings despite
head movements, presumably in dependence on oculomotor efference
copy and vesitibular head movement signals (see further, Land, 2012). The
content of the colored sector, of course, is always what is before the eyes.
For gaze movements from one primary position to another that content
always occupies the same fixed sector of the reality model (i.e., without
requiring translatory movement), given surround compensatory movement
plus saccadic suppression. In the proposed dorsal pulvinar implementation
of such a reality model, the compensatory surround movement can draw
on afference from both colliculus and posterior parietal cortex, the latter in
receipt of disynaptic hippocampal, cerebellar and collicular (Clower et al.,
2001), as well as vestibular (Andersen, 1997), information. The Cardiff
Castle panorama photo is from Gregg M. Erickson under a Creative
Commons Attribution 3.0 Unported license, modified in polar coordinates
by Nevit Dilmen under the same license, further modified for inclusion in
this figure by Bjorn Merker and released under the same license.

orbits and of the head on its cervical pivot. Rotation-based coor-
dinate transformations accordingly are central operations in their
coordination and control (Crawford et al., 2011). That control
is implemented by highly conserved and complex sensorimotor

circuitry of the brainstem (Simpson et al., 1988; Büttner-Ennever
et al., 1989; Grantyn et al., 1992; Masino, 1992; Isa and Sasaki,
2002), ultimately anchored to the vestibular system (Cohen,
1988). All higher control of orienting behavior must in one way
or another access that control circuitry.

The circumstances just reviewed allow a considerable portion
of the efference cascade to be put to one side for present purposes.
In his comprehensive survey of the “anatomy of the descending
pathways” of 1981, Kuypers identified two major contingents of
these pathways (Kuypers, 1981). He called them Group A and
Group B. The fiber tracts of Group A follow and contribute to the
brain’s most basic and earliest formed fiber tract, the medial lon-
gitudinal fasciculus (Ross et al., 1992). Through this contingent
of medially descending tracts, vestibular, oculomotor/reticular,
tectal and other fiber systems effect a set of spatially directional
motor adjustments that regulate the body’s basic postural ori-
entation to its surroundings in gravitational, inertial, and other
spatial sensory system terms (i.e., the functional domain outlined
in Roberts, 1973). This medial system is crowned by the control
circuitry for eye, head, and (in many species) ear movements that
together with trunk movements determine the direction of gaze
during orienting movements (Hassler and Hess, 1954; Henkel and
Edwards, 1978; Büttner-Ennever et al., 1989; Grantyn et al., 1992;
Masino, 1992; Isa and Sasaki, 2002; Horn, 2006).

The fiber tracts of Group B descend in a lateral course through
the brainstem, and functionally supplement those of Group A
with motor adjustments centered on distal extremities such as
those involved in manipulative activity. Group B circuitry accord-
ingly can be thought of as the part of the efference cascade by
which the brain guides the body’s “engagement” with the configu-
ration of a selected target object or event, while Group A “orients”
the body to its global surroundings and targets within it. There
is an obvious match between these two contingents of the effer-
ence cascade and the “leading” and “following” components of
behavior referred to above. It is only the first of these movement
domains, those of orienting, that are served by the simplifying
geometry of egocentric, rotation-based transformations reflected
in the nested format of our sensory consciousness. The search
space for a hypothetical implementation of sensory conscious-
ness within the targets of the efference cascade accordingly can
be confined to components of Kuypers’ Group A “orienting”
circuitry.

Even then, Group A features daunting complexity, and further
constraints are needed. Functionally, a unitary displacement of
the gaze from one target location to another is typically effected
by a minimum of two partly independent but linked motor sys-
tems, those of eyes and head. The most caudally located premotor
site for unitary specification of gaze displacements is the supe-
rior colliculus in the roof—tectum—of the midbrain [(Munoz
et al., 1991; Freedman et al., 1996; Freedman and Sparks, 1997;
Scudder et al., 2002); reviewed in Sparks (2004); see also (Khan
et al., 2009)]. Downstream from the superior colliculus the cir-
cuitry for control of eyes and head again diverge (Masino, 1992;
Scudder et al., 2002; Sparks, 2004; Horn, 2006).

The search for a unitary global best estimate mechanism can
be confined, in other words, to targets of cortical layer V pro-
jections concerned with orienting behavior located between the
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cortex and the isthmic caudal border of the midbrain. Within this
territory, the numerous targets of descending projections from
the principal orienting-related cortical areas, namely the frontal
eye fields and gaze-related partietal cortex in primates (Huerta
et al., 1986; Stanton et al., 1988a; Saint-Cyr et al., 1990; Lock
et al., 2003) are entangled in intricate mutual connective relations
within which an ordering principle is nevertheless discernible. As
pointed out by Huerta et al. (1986, pp. 434–435), the colliculus
belongs among the more prominent targets of both of these cor-
tical areas, and many of their other subcortical targets—typically
connected with one another—project to the colliculus and are tar-
geted by the colliculus in its turn. The functional significance of
this curious parallel or duplicative connectivity will be explored
in what follows.

AN ORIENTING SUPERHUB IN THE ROOF OF THE MIDBRAIN
At least half a dozen areas of the macaque cortex have func-
tional specializations related to the control of gaze movements
(see Lynch and Tian, 2006 for a detailed treatment). Of these,
the principal ones are the frontal eye fields inside the arcuate sul-
cus of the frontal lobe and the parietal gaze area in the lateral
bank of the intraparietal sulcus, henceforth “cortical gaze fields”
for short. The telencephalic, diencephalic, and mesencephalic tar-
gets of descending projections from the cortical gaze fields are
shown in barest outline in Figure 2, along with some of the prin-
cipal connections among those targets. Together these structures
form the basic supranuclear apparatus for control of gaze (orient-
ing) behavior between the cortex and the mesopontine isthmus.
It is interposed, in other words, between the cortex and the brain-
stem reticular and cervical spinal motor circuitry for eye and head
movement control. In the figure they have been grouped into two
“subcortical tiers.” One contains cortical gaze field targets in basal
ganglia and dorsal thalamus, and the other their targets in ventral
thalamus and midbrain.

Tier 1 consists of the gaze field recipient zones in the stria-
tum and a paramedian constellation of orienting-related thalamic
nuclei which in addition to the pulvinar complex includes what
might be called the “extended intralaminar complex.” The latter
is a set of thalamic nuclei that share the property of project-
ing to the basal ganglia (Powell and Cowan, 1956; Jones, 1989,
1998; McFarland and Haber, 2000, 2001). They include the supra-
geniculate and limitans nuclei at the caudoventral border of
the thalamus, the parafascicular, central lateral, and paracentral
nuclei of the classical intralaminar nuclei (weakly connected to
the gaze fields) and (flanking the paracentral nucleus) “paralam-
inar” portions of the mediodorsal, ventral anterior, and ventral
lateral nuclei.

The striatal destination of many of the projections issuing from
dorsal thalamic targets of the cortical gaze fields, along with the
direct gaze field projections to the striatum, makes the basal gan-
glia the center of gravity of Tier 1 projections. This is reinforced
by the fact that the chief thalamic targets of the cortical gaze
fields lack descending projections of their own. Thus, as far as ori-
enting gaze behavior is concerned, the principal descending exit
from Tier 1 (i.e., from dorsal thalamus and striatum) is through
the basal ganglia output pathway for gaze-control. It passes via
the substantia nigra pars reticulata and lateralis in the ventral

FIGURE 2 | Schematic depiction of the basic connective relations of

the supranuclear apparatus for gaze control discussed in the text. The
figure may conveniently be inspected by proceeding from the two principal
cortical “gaze fields,” the frontal (FGF) and the parietal (PGF), which are
mutually connected. Projections descending from them are shown as
curvilinear trajectories, further distributed to components of Tier 1 [dorsal
thalamus and basal ganglia (BG)] and Tier 2 (ventral thalamus and midbrain)
via connective “buses” (for graphical economy). Connections between
components of Tiers 1 and 2 are omitted to avoid clutter, with two
exceptions: Tier 1 projections destined for the basal ganglia (BG) are
shown, as are the main connections of both tiers with the superior
colliculus (SC). Both cortical gaze fields issue direct projections to the
colliculus as well as to the brainstem orienting apparatus. The latter has a
token representation in Tier 2 in the form of its most rostral member, the
rostral interstitial nucleus of the medial longitudinal fasciculus (riMLF).
Connections to the rest of that apparatus are shown descending along the
medial longitudinal fasciculus (MLF), and include the direct collicular
descending projections to the paramedian brainstem and spinal cord. The
colliculus returns projections to the cortical gaze fields via synapses in the
paralaminar MD (MD) and Pulvinar (PULV), shown as straight lines
deflected in the respective dorsal thalamic nuclei. Note, finally, that the
chief descending route from Tier 1 to the brainstem orienting apparatus
proceeds from the basal ganglia (which also receive direct cortical gaze field
projections) via its midbrain outpost, the substantia nigra pars reticulata
(SNr), to the superior colliculus. Together with the rest of its connectivity
sketched here, this places the colliculus in the position of connective
superhub in the supranuclear apparatus for gaze control, a concept further
explicated in the text. Solid dots mark the source of a projection. The
termination of a projection is shown ending in an open “Y.” Filled triangles
indicate reciprocal connections. Ext. intralam. cmplx, extended intralaminar
complex, which includes the suprageniculate and limitans nuclei; VA-VL,
ventral anterior and ventrolateral nuclei; PT, pretectal nuclei; LGV, ventral
lateral geniculate nucleus (pregeniculate of primates); MRF, midbrain
reticular formation; ZI, zona incerta. The figure was inspired by the passage
on pp. 435–436 of Huerta et al. (1986). For further detail, see Goldman and
Nauta (1976); Fries (1984); Asanuma et al. (1985); Lynch et al. (1985);
Leichnetz and Goldberg (1988); Selemon and Goldman-Rakic (1988);
Saint-Cyr et al. (1990); Shook et al. (1991); Lock et al. (2003); May (2006);
and Stanton et al. (1988a,b).

midbrain to the superior colliculus in the roof of the midbrain
(Beckstead et al., 1979; Hikosaka and Wurtz, 1983, 1989). As the
main connecting link between the first and second tiers, the sub-
stantia nigra of the midbrain occupies a position of its own in
Figure 2.

Tier 2 has its most rostral outpost in the zona incerta, a ventral
thalamic derivative on the undersurface of the dorsal thalamus
(see Merker, 2007, pp. 75–76). It further contains the ventral
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lateral geniculate nucleus (the pregeniculate nucleus of primates;
also a ventral thalamic derivative), the anterior and posterior
pretectal nuclei, the rostral interstitial nucleus of the medial lon-
gitudinal fasciculus, as well as the midbrain reticular formation
and what might be called the “perioculomotor nuclei” (the inter-
stitial nucleus of Cajal, nucleus of Darkschewitsch and nucleus of
the posterior commissure, not represented in the figure). Finally,
it contains as its most elaborate and prominent member the supe-
rior colliculus in the roof of the midbrain. Anatomical references
are cited in the legend to Figure 2.

The various components of Tier 2—unlike a number of those
in Tier 1—have descending projections of their own. In the case
of the gaze-related output of the substantia nigra—the prin-
cipal conduit for the entire descending output of Tier 1—this
projection terminates in the intermediate layers of the supe-
rior colliculus. This makes the superior colliculus the principal,
if indirect, premotor output station of Tier 1. In addition to
conveying the output of Tier 1, the colliculus receives promi-
nent direct projections from the cortical gaze fields themselves
(Huerta et al., 1986; Stanton et al., 1988b; Lock et al., 2003),
as well as from a number of their Tier 2 targets. This conver-
gence of gazefield-related connectivity on the superior colliculus
is complemented—as pointed out by Huerta and colleagues and
illustrated in Figure 2—by collicular projections to virtually the
entire gamut of their diencephalic and midbrain targets (Huerta
et al., 1986, pp. 435–436).

Apparently the superior colliculus occupies a central position
in the descending connectivity of the cortical gaze fields, sug-
gestive of “superhub” status in informal graph theoretic terms.
Assigning it such a role by no means implies that the superior
colliculus constitutes an obligatory link in the descending gaze
field control over eye and head movements. Instead it opens the
possibility that it may perform a more indirect or higher order
function than its midbrain location might suggest. It is but one of
many subcortical targets of the cortical gaze fields. Among these,
most Tier 2 structures have independent descending brainstem
projections, and the cortical gaze fields themselves project beyond
the midbrain to brainstem nuclei with functions in the control of
eye end head movements (Schiller et al., 1980; Schnyder et al.,
1985; Huerta et al., 1986; May and Andersen, 1986; Stanton et al.,
1988b; Faugier-Grimaud and Ventre, 1989; Shook et al., 1990,
1991; Munoz and Schall, 2004), though some of these projections
are not very strong.

In this setting, a collicular role as connective superhub means
that from virtually any component of the supranuclear orienting
apparatus sketched in Figure 2 there typically is a short synaptic
route to the superior colliculus and via it to any other compo-
nent of that apparatus. The range of collicular connective relations,
arrayed in tandem (i.e., in parallel) with the complex orienting
circuitry it serves, seems to indicate that the superior colliculus per-
forms a central function which otherwise diverse components of that
circuitry have reasons to access and presumably derive benefit from.
What might that function be?

THE KEY TO COLLICULAR FUNCTION
The wide-ranging afferent and efferent connectivity of the supe-
rior colliculus indicates that it must perform an integrative

function of wide scope. A multitude of sensory as well as non-
sensory cortical and brainstem systems converge with laminar
specificity on its layered structure in the roof of the midbrain
(see Figure 3). In the cat more than 40 subcortical nuclei and
over 25 cortical areas project to it (Edwards et al., 1979; Edwards,
1980; Harting et al., 1992; see also Grofová et al., 1978; Hikosaka
and Wurtz, 1983; Huerta and Harting, 1984; Rieck et al., 1986;
Canteras et al., 1994). Collicular output, in turn, distributes diver-
gently: not only do its descending projections target a range of
brainstem systems controlling the diverse effectors of orienting
movements, including those of the ears in animals that move
them (Henkel and Edwards, 1978), but contrasting behavioral
output categories are functionally segregated within them (Dean
et al., 1988, 1989; Moschovakis et al., 1988a,b; Westby et al.,
1990; Redgrave et al., 1993; Mana and Chevalier, 2001; Comoli
et al., 2012). Its ascending projections, meanwhile, target the
telencephalon (cortex and basal ganglia) via the higher-order and
intralaminar thalamic nuclei, as already outlined (Huerta and
Harting, 1984; Sparks and Hartwich-Young, 1989; May, 2006).

FIGURE 3 | Schematic depiction of two principal design features of the

anatomical organization of the superior colliculus. Lower left: The
cortex-like segregation, by laminar depth in the colliculus, of collicular
afferents from many and diverse cortical and subcortical sources. Here only
cortical sources are illustrated. Each source typically projects through the
full mediolateral extent of the colliculus, but is here shown only as a narrow
sector in which its laminar depth is marked by shading. The drawing is a
simplified adaptation of results by Harting and colleagues in the cat (Harting
et al., 1992), patterned after their summary Figure 27. Upper right: A
cartoon of the compartmental organization of the collicular intermediate
gray substance, based on histochemical and connectional studies in rat and
cat (Harting et al., 1992, 1997; Chevalier and Mana, 2000). The upper
surface of the composite drawing is patterned after Figure 6 of Chevalier
and Mana (2000), and its cut face is loosely patterned after Figure 26 of
Harting et al. (1992). Note that this part of the figure combines patterns
from rat and cat, and is not anatomically veridical. It is only intended to
convey the honeycomb-like tessellation of the collicular intermediate gray
substance, by means of which distinct input-output “channels” are
concatenated within a shared sensori-motor topography. See further the
studies just cited, as well as Deniau et al., 2007 and Redgrave et al., 1992.
SC, superior colliculus; PAG, periaqueductal gray matter; MRF, midbrain
reticular formation.
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Well over a century of behavioral and physiological studies
indicate that this integrative hub somehow serves the multi-
effector phasic movements that re-orient an animal’s receptor
surfaces relative to a spatial target of immediate behavioral inter-
est (Adamük, 1870; Hassler and Hess, 1954; Schneider, 1967;
Schaefer, 1970; Syka and Radil-Weiss, 1971; Straschill and Rieger,
1973; Goodale and Murison, 1975; Harris, 1980; Merker, 1980;
Roucoux et al., 1980; McHaffie and Stein, 1982; Milner et al.,
1984; Dean et al., 1989; Freedman et al., 1996; Gandhi and
Katnani, 2011). The canonical form of this re-orienting is the
swift and seamlessly integrated joint action of eyes, ears (in many
animals), head, and postural adjustments that make up what its
pioneering students called the orienting reflex (Sokolov, 1963)3

. Collicular involvement in this central pivot of behavior extends
even to its autonomic and cerebral activation aspects (Jefferson,
1958; Dean et al., 1991; Dringenberg et al., 2003).

It would be tempting to call the colliculus the “central pattern
generator of the orienting reflex,” were it not for the fact that
it does not actually specify the particular moment to moment
sequence in which eyes, ears, head, trunk or limbs combine
to produce a given orienting movement. The interplay among
components of orienting gaze shifts is apparently settled down-
stream of the colliculus (Sparks, 2004). There the elaborate
brainstem connectivity bundled along the medial longitudinal
fasciculus carries the vestibular, cerebellar, and postural infor-
mation, including eye position information, integral to the fluid
interplay of the several effector organs involved (Büttner-Ennever
et al., 1989; for the complexities involved in eye-head coordina-
tion alone, see Crawford et al., 1999; Sparks, 1999; Scudder et al.,
2002).

Moreover, the behavioral role of the colliculus is not confined
to the orienting reflex as classically conceived. Without a col-
liculus, animals do not exhibit escape reactions to visual threat
(Sprague et al., 1961; Denny-Brown, 1962; Sprague and Meikle,
1965; Casagrande and Diamond, 1974; Merker, 1980; Dean et al.,
1989; King and Cowey, 1992). Such escape behavior re-orients the
animal away from the eliciting stimulus, and no orienting toward
that stimulus need precede the precipitous escape triggered by an
effective visual threat (Merker, 1980)4. Again, the escape behavior
itself is presumably orchestrated downstream of the colliculus,

3Recognition of this collicular function was long delayed by the fact that the
head of the experimental animal was fixed in a number of key physiologi-
cal experiments designed to probe collicular function, and a restricted set of
stimulation sites and parameters in early experiments in which the animals
were free to move their heads (Robinson and Jarvis, 1974; Stryker and Schiller,
1975; see further Sparks, 2004). With less restrictive experimental conditions,
not only does collicular stimulation evoke integrated gaze movements com-
bining movement of eyes and head (Freedman et al., 1996; Sparks, 2004), but
the animals’ localization ability is drastically improved (Tollin et al., 2005),
and the relationship between collicular unit activity (as well as stimulation
site) and behavior is altered (see Sparks, 1999 for details).
4In the author’s studies of escape behavior in hamsters (Merker, 1980),
frame-by-frame analysis of the filmed trials showed that no orienting move-
ments toward the over-head sudden silent visual threat preceded the explosive
escape behavior triggered by the stimulus (Merker, 1980). Instead the animal
instantly reoriented to one of two escape routes in the familiar testing arena,
and scrambled to safety, a behavior that was abolished by undercutting the
superior colliculus, severing its descending projections. In present terms, on

with involvement of the nucleus cuneiformis and periaqueductal
gray matter located directly beneath the colliculus (Sprague et al.,
1961; Blanchard and Blanchard, 1987; Dean et al., 1988).

Functionally, there is little common ground between orient-
ing target acquisition and escape from visual threat except this:
in both situations the brain selects a “spatial target of immediate
behavioral priority” toward which the animal’s receptor surfaces
are re-oriented. In the case of escape behavior, that spatial tar-
get is a safe place or escape route and not the eliciting stimulus
itself—in fact, the farther from that stimulus the better! A so far
elusive generic definition of collicular function may accordingly
come within reach by focusing on the determination of target pri-
ority rather than on either the eliciting stimulus or the nature of
the resulting movement (see Schall and Thompson, 1999; Fecteau
and Munoz, 2006; Boehnke and Munoz, 2008).

Such a function, it is hereby proposed, may be formulated as
follows: The superior colliculus provides a comprehensive mutual
interface for brain systems carrying information relevant to defin-
ing the location of high priority targets for immediate re-orienting
of receptor surfaces, there to settle their several bids for such a pri-
ority location by mutual competition and synergy, resulting in a
single momentarily prevailing priority location subject to immediate
implementation by deflecting behavioral or attentional orientation
to that location.

The key collicular function, according to this conception, is the
selection, on a background of current state and motive variables
(Dorris et al., 2007), of a single target location for orienting in the
face of concurrent alternative bids. In this capacity the colliculus
would serve as the brain’s final “priority comparator” or “prior-
ity gate” for immediate re-orienting. It would determine which
of simultaneous bids for an orienting movement (including that
of continuing the current orientation unchanged, Munoz and
Guitton, 1989; Peck, 1989) should prevail in gaining momentary
control of collicular output circuitry housed in its intermediate
layers. The colliculus resolves conflicts, in other words, between
the many brain systems whose state bears on an impending ori-
enting movement. According to one theory of the function of
phenomenal states (Morsella, 2005), this should give it a role
in the constitution of such states. What that role might be is a
question the present analysis is laboring to answer.

To clarify further the priority gate function of the collicu-
lar orienting superhub: what will be impaired in the absence
of the colliculus is not eye or orienting movements as such—
as orienting superhub the colliculus is arrayed both in parallel
and in series with cortical gaze fields (see Figure 2 and Schiller
et al., 1980)—but the process of selection among concurrent bids
for target location priority. Depending on task and situational
particulars this may take the form of deficient selection and trig-
gering of alerting, orienting and escape reactions—impaired dis-
tractibility being a common symptom of collicular lesions across
species (Denny-Brown, 1962; Casagrande and Diamond, 1974;

the rare and sudden appearance of a large, dark, and silently but swiftly mov-
ing visual stimulus in the animal’s upper visual field the location of an escape
route, known to the animal from long established familiarity with the testing
arena, became its compelling “spatial target of immediate behavioral priority.”
For effective visual threats in rodents, see Wallace et al. (2013).
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Goodale et al., 1975, 1978; Milner et al., 1978; Merker, 1980;
Albano et al., 1982; Gaymard et al., 2003)—or impaired ability to
regulate orienting priorities in a learning situation (Winterkorn
and Meikle, 1981).

Selection of the spatial target for the next orienting move-
ment is not a matter of sensory locations alone, but requires
access to situational, motivational, state, and context information
determining behavioral priorities. It combines, in other words,
bottom-up “salience” with top-down “relevance.” As emphasized
by Munoz and colleagues, priority is a weighted combination
of these two types of information (Fecteau and Munoz, 2006;
Boehnke and Munoz, 2008). This provides a rationale for non-
sensory collicular afference such as that originating in cortical
association areas and hypothalamus, and more generally the
conspicuous convergence of exogenous (bottom-up) and endoge-
nous (top-down) information sources in the superior colliculus
(cf. Lines and Milner, 1985; Rieck et al., 1986; Cooper et al., 1998;
Trappenberg et al., 2001; Felsen and Mainen, 2008; Reyes-Puerta
et al., 2009; Cohen and Castro-Alamancos, 2010; Meeter et al.,
2010; Maior et al., 2012).

No cortical gaze field is as directly connected to as wide a range
of sources carrying information bearing on the decision where
to turn next as is the midbrain superior colliculus. The cortical
gaze fields receive high level information but not primary sen-
sory afference, while the colliculus receives both the latter and the
direct output of the cortical gaze fields and numerous additional
cortical and brainstem afferents as well. Its broader afference
enables its intrisic circuitry to weigh a wider range of informa-
tion bearing on the very next orienting movement than any other
known neural system [with the possible exception of the zona
incerta, with which it is reciprocally connected (Merker, 2007,
pp. 75–76)]. This predicts that without a colliculus an animal will
be capable of turning and orienting, but not with as comprehen-
sive a moment-to-moment weighting and comparison/gating of all
relevant sources of information as when in possession of an intact
collicular hub.

The intricate intra- and inter-laminar circuitry within the col-
liculus that carries out the requisite interactions among its many
inputs is beyond the scope of this review [(Moschovakis et al.,
1988a,b; Doubell et al., 2003); see review in Isa and Hall (2009)].
Suffice it to say that it involves massive inhibitory interactions,
both intrinsic to the colliculus (Katsuta and Isa, 2003) and com-
ing from outside in the form of powerful inhibitory projections
from several sources, only one of which is the already mentioned
nigral projection. They include the zona incerta, anterior and
posterior pretectal nuclei, the periparabigeminal area, a “critical
zone” of the pedunculopontine region, and indirectly, via collic-
ular interneurons, the parabigeminal nucleus (Ficalora and Mize,
1989; Appell and Behan, 1990; Behan and Appell, 1992; May et al.,
1997; Durmer and Rosenquist, 2001; Klop et al., 2006; Lee and
Hall, 2006). Through this convergent interface, multiple func-
tionally diverse systems—each occupying a unique laminar depth
in the colliculus—have their say, via inter- and intralaminar col-
licular interactions, in the moment to moment determination of
the next priority target location.

The advantage of conducting structured interactions between
low-level primary afference and high-level cortical information

in a compact, convergent, laminar mechanism is twofold. First,
this way the brain escapes the liability of entrusting moment-
to-moment decisions to an executive fed only highly derivative
information. When high-level cortical areas place their prior-
ity bids with an independent priority comparator, the brain as
a whole, through its offices, stays open to “last split-second”
course corrections, even by low-level sensory information, pro-
vided its magnitude is sufficient to override current competitors
(cf. Marino et al., 2012). It is worth noting in this connection that
cognitively demanding high-level deliberations are often read-
ily postponable in comparison with intrusive sensory change
that might spell disaster unless immediately attended to. Though
often a fleeting glance is all that is required before ongoing
behavior can be safely resumed, these “cautionary glances” nev-
ertheless compete with the demands of ongoing behavioral task
execution. Both utilize the same effector equipment for ori-
enting, hence the need for a mechanism to resolve conflicts
between them (Morsella, 2005; see Goodale et al., 1975 for
an example).

Second, by taking place in a compact neural space by means
of short axon intrinsic connectivity, the interactions needed to
determine target location priority can occur far faster than any-
thing that might be accomplished by long-range cortico-cortical
interactions among multiple systems. The abolition of short
latency gaze shifts by lesions of the colliculus or its local inac-
tivation (Schiller et al., 1980, 1987; Hikosaka and Wurtz, 1985,
1986) accordingly may reflect the absence of the rapid descision
making competence by which the colliculus normally drives the
orienting machinery (Yarbus, 1967; Sparks et al., 2000; Johansson
et al., 2001; Schiller et al., 2004), rather than a mere quantitative
slowing of the orienting system.

There is thus no need to interpret the oft reported “vacant
stare” and “fixed gaze” of colliculectomized tree shrews and
monkeys (Denny-Brown, 1962; Anderson and Symmes, 1969;
Casagrande and Diamond, 1974; Keating, 1974; Butter, 1979) as
a symptom of an inability to move the eyes or to orient. Rather,
without the broad-based afference and rapid operation of the col-
licular decision making machinery the incessant lively play of the
orienting reflex triggered at the collicular interface of endoge-
nous and exogenous signals is compromized, leaving orienting
behavior impoverished (see citations on impaired distractibility
above).

Among investigators reporting impoverished orienting behav-
ior in monkeys after lesions centered on the superior colliculus,
none was more impressed by the lack of spontaneity in post-
lesion behavior than was Derek Denny-Brown. In his Sherrington
memorial lecture of 1962 he reported on the behavior of five
macaques with such lesions, stressing a global deficit in sponta-
neous behavior as a key symptom of their brain damage. The ani-
mals showed a “gross reduction in all types of externally directed
behavior,” spent long periods “staring aimlessly into space,”
and uttered no sounds (Denny-Brown, 1962, pp. 536–537).
These global deficits appear to indicate, he suggested, that the
tectum is the “primary driver of the mesencephalic reticulum”
(which fits with the evidence for a collicular role in cerebral acti-
vation cited above, Jefferson, 1958; Dean et al., 1991; Dringenberg
et al., 2003).
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There were, however, considerable differences among Denny-
Brown’s five animals in the nature and severity of their symptoms,
extending to the details of their visuomotor behavior. These dif-
ferences presumably are related to differences in the extent and
location of the lesions. The lesions were large and deep, variously
encroaching on neighboring structures. In this connection it is
worth noting that the behavioral effects of complete and selec-
tive lesions of the periaqueductal gray matter are more drastic
versions of the kind of global behavioral changes reported by
Denny-Brown (see Bailey and Davis, 1942, 1944). It seems plausi-
ble, therefore, that these symptoms, including persistent mutism
(Gruber-Dujardin, 2010)5, relate to damage extending beyond the
colliculus into the immediately underlying periaqueductal gray
matter or its efferent fibers. In addition, periaqueductal loss of
its collicular input (Mantyh, 1982, 1983) may have contributed to
the observed deficits.

Perhaps in cognizance of the likelihood that the behavioral
symptoms he described involved damage to more than the supe-
rior colliculus sensu stricto, Denny-Brown ended his lecture on
a cryptic note. The periaqueductal gray and above all its “more
differentiated peripheral layers,” namely midbrain reticular for-
mation and tectum are vital, he wrote, for unitary functioning
of the organism in relation to its surroundings, and constitute
what he called the physiological “ego.” He did not elaborate on this
obscure formulation, but this is the first time a linkage between
the neural machinery in the roof of the midbrain and “the self”
appears in print. Fifteen years later a similar suggestion, focused
on the sense of continuity of self over time, is made by the
Scheibels with regard to the deeper layers of the superior collicu-
lus and nucleus cuneiformis beneath its caudal border (Scheibel
and Scheibel, 1977). They, as well as Denny-Brown, are cited in
their turn at late points in an expansive discourse on a collic-
ular locus of “awareness of self” published by the biochemist
and gerontologist Bernard Strehler 14 years after the Scheibels
(Strehler, 1991).

Of these three, only Strehler attempts a detailed justification
of a collicular role in the domain of self and awareness. However,
the terminology he applies to this end is so varied and impre-
cise as to leave the attempt under-constrained from the side of
the proposed function. The latter might, by close reading, be
narrowed down to “awareness of self-vs-environment” or a sys-
tem’s “cognizance of its own existence” (Strehler, 1991, p. 81).
In present terms, these expressions refer to particular contents
of consciousness (i.e., cognizance of the distinction between self
and environment, or of the fact that one exists, both of which
are cognitive contents). They do not, in other words, define fac-
tors constitutive of the state that allows contents to be consciously
apprehended; rather they presuppose it. If instead we ask whether
there might not be some construal of the term self that might in
fact refer to a constitutive factor of the conscious state, and how
such a factor might be neurally implemented, a possible role for
the superior colliculus in the constitution of the conscious state
does indeed come within view.

5It appears that the integrative role of the periaqueductal gray in vocal behav-
ior [for which see review by Gruber-Dujardin (2010)] in fact resembles the
role here proposed for the colliculus in orienting behavior.

THE SELF THAT IS EXCLUDED FROM BUT PRESUPPOSED BY
THE CONTENTS OF CONSCIOUSNESS
The entire content of our sensory experience bears witness in
multiple ways to the egocentric geometry of its spatial arrange-
ment. As far as immediate sensory experience goes, all its
contents, irrespective of modality, are arrayed around an approx-
imation to a single point, the point “from which” they all are
experienced, be they near or far, high or low, left or right, in front
or behind (e.g., sounds). In fact, these very terms are defined in
relation to that point, and have no meaning apart from it; the
same applies to “sidedness” and “handedness” (James, 1890, p.
150, footnote 2). It is this egocentricity of sensory experience—
the fact that visual (as other) objects are perceived from a point—
that occasions the occlusion of one visual object by another. In the
sense of touch the sensation of a light touch to a finger is experi-
enced as located in the finger, but that sensation in the finger is not
experienced from the finger, but from about the same spatial loca-
tion from which that finger is seen, even if the sensation should
occur in pitch darkness. Our spatial senses are integrated, in other
words, into a single, panoramic multimodal space anchored to its
egocenter common origin (see Figure 1)6.

That point, that origin, lies at the intersection of all lines
of sight, serving as their common pivot (cf. Vetter et al., 1999;
Wagner, 2006; Thaler and Todd, 2009). It is located at the
proximal-most end of any line of sight or equivalent line of atten-
tional focus (say for somesthesis in the dark). It is the “here” with
respect to which any sensory (or other) percept is “there.” It is the
point, in other words, from which we are looking and, more gen-
erally, registering sensory experience or deploying attention. For
our visual perception of the world, that point can be determined
with millimeter precision by a simple procedure first developed
by Hering (1879/1942; Roelofs, 1959). Commonly included in lab
exercises in the psychology of perception it empirically pinpoints
the intersection of a few lines of sight obtained by fixating spec-
ified environmental locations and aligning fiduciary pins with
them along each of the lines of sight (Howard and Templeton,
1966).

Thus, determined, the visual egocenter is found to be, first of
all, single (not a foregone conclusion given that we have two eyes)
and it turns out not to be located, as one might suppose, at the
midpoint between the centers of rotation of the two eyes. Rather,
it lies deeper inside the head, in the midsagittal plane, some
4–5 cm behind the bridge of the nose (see left panel, Figure 4).
This empirically determined location inside the head from which
we look out upon the world along straight and uninterrupted
lines of sight is of course surrounded on all sides by biological
tissues. Here lies the ultimate conundrum of phenomenal sensory
awareness, the Achilles heel of its secret, in fact. How it is possible

6Visual experience is panoramic: no one has ever experienced that mainstay of
philosophical discussions of perception—the “red of a tomato”—in itself and
as such, but always only in a particular location with a visual surround, typi-
cally rich in other objects arrayed around it and all of them together around
us. It is an egregious error to imagine that the problem of perception can be
approached by “starting simple” to build complexity from elementary sensa-
tions (the tortuous nature of William James’ attempt to do so is a case in point;
James, 1890, pp. 145–166).
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FIGURE 4 | Left panel: The present author’s visual egocenter, empirically
determined by the method of Hering (Howard and Templeton, 1966), and
transferred onto a horizontal structural magnetic resonance image of a
human head at the level of the eyes, where it is marked by a cross (Image,
©Nevit Dilmen found at Wikimedia commons, released under a Creative
Commons Attribution-Share Alike 3.0 Unported license). Right panel: A
monocular view from the visual egocenter, rendered by Ernst Mach through
his left eye (Mach, 1897, Figure 1, p. 16). The dark fringe of Mach’s eyebrow
appears beneath the shading in the upper part of the figure, the edge of his
moustache at the bottom, and the silhouette of his nose at the right-hand
edge of the drawing. These close-range details framing his view are
available to our visual experience, particularly with one eye closed, though
not as crisply defined as in this drawing. In a full cyclopean view with both
eyes open the scene is framed by an ovoid within which these proximal
details typically disappear from view. Apparently Mach was a smoker, as
indicated by the cigarette extending forward beneath his nose. Digitally
retouched version of Mach’s drawing reproduced courtesy of Wikimedia
(http://commons.wikimedia.org/wiki/File:Ernst_Mach_Innenperspektive.png).
Note the apparent impossibility of having an unobstructed view of a scene
from the empirically determined point marked on the image on the left, a
point which is surrounded on all sides by biological tissues (see further the
text).

to have unobstructed lines of sight into the world from a place
inside our heads that is surrounded on all sides by opaque tissues?

The short answer is that our experienced head is the head of
the neural reality model (see Figure 1, rastered head), for which
arrangements are possible that are not realizable in the physi-
cal head itself. For details, see my previous publications (Merker,
2012, pp. 53, 55 and 2013, pp. 26–27). Here, we are concerned,
rather, with what it is that occupies this enigmatic location at the
origin of the line of sight.

Typically our line of sight is deployed to a distal object of inter-
est, but let us reverse the direction of our interest by “moving
backwards” along a line of sight toward its proximal origin. We
will then traverse a succession of environmental locations ever
closer to ourselves, to arrive in the vicinity of our eyes. At these
close quarters we may espy the shadowy presence of the edge of
our orbit in peripheral vision, particularly if, as in Figure 4, we
follow Ernst Mach’s example, and close one eye. Then, as we try
to proceed all the way to the origin of the line we have followed, an
origin we know to be located inside our head, we are suddenly at a
loss for any determinate content of consciousness whatsoever that
might inform us about the nature of that which occupies the ori-
gin of the line we have followed backwards. Disappointed, but not
defeated, we press on, and continue progress along the extension

of the line of sight through the troublesome lacuna we landed in,
to have our focus arrive in short order at the back of our head.

We are then free to continue our imaginary journey out into
the world behind our head. There is, however, no need to do so,
because the answer to the question of what occupies the origin
of the line of sight is already at hand. For every step away from
the troublesome lacuna, even to a distance as short as to the back
of our head, the points along the line we are tracing are ever
more distant from the place from which we are conducting the
exercise. We are, in other words, increasing the distance between
our targets and ourselves, in a reverse motion from the one that
brought us to the lacuna. What occupies the lacuna, then, can
be nothing other than we ourselves. The place from which one
is looking or attending is occupied—necessarily, unsurprisingly,
and tautologically—by oneself.

This “oneself,” the self thus located through the above first per-
son exercise, is not and cannot be a self-image of any kind. It
defines the viewpoint from which any and all images are viewed—
or equivalently, is the origin of all lines of sight (and “lines of
attention,” the exercise was conducted by covert attention). It is
the one location that is forever beyond the reach of any directed
attention or perception, because it is the point from which atten-
tion is directed and relative to which percepts are located in the
space whose origin it defines.

This helps explain the utter blank one draws in attempt-
ing to take the last step along the line of sight back to its
origin. That location is excluded from the contents of conscious-
ness by the same geometric necessity that prevents an eye from
viewing itself, though it is the instrument for viewing all else
(Schopenhauer,1844/1958, vol. 2, p. 491; see also Baars, 1988,
pp. 327ff for “contextual” aspects of consciousness). This is what
David Hume failed to realize when he “searched his mind” for
a self and found only perceptions and bundles of perceptions
(Hume, 1739/1888). The self he was looking for is the place from
which he was looking.

The first person exercise we have just conducted yields a min-
imal definition of the self as the perceptual egocenter of sensory
consciousness and, by extension, of all awareness. It defines a loca-
tion with respect to which any and all conscious percepts can be
uniquely localized in space by direction and distance relative to
that point. Some of these percepts are located inside our skin—
say, a stirring of joy in our breast or a headache—yet they are still
perceived relative to that self-same egocenter. Its location inside
the head just behind the eyes—a convenience for the control of
orienting movements, as we have seen—is in good agreement
with our intuitive sense of “where we (and others) are located”
as recently determined empirically by a third-person procedure.
Both children and adults assign that location to the vicinity of the
eyes (Starmans and Bloom, 2012).

For present purposes, it matters little whether that assignment
draws on first person intuitive conclusions along the lines of our
exercise above, or on the sense that the lively play of a person’s
eyes bear more immediate and direct witness to their interests
and intentions—and hence to their self—than do other visible
behaviors. Perhaps it is a combination of both, because the two
are intimately related. When, for purposes of the above exercise,
we moved attention along our line of sight we were doing no
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more than making deliberate use of the routine functional role
of our perceptual vantage point (egocenter) in directional move-
ments of attention and gaze. It is only in relation to the perceptual
egocenter that the size and direction of the angular displacement
required of a given gaze or attentional movement are defined. As
the implicit reference of all such movements it is the central func-
tional pivot from which they issue, not as motor instructions for
a particular combination of eye, head and trunk movements, but
rather as locational pointers to targets in egocentric space to be
attained by the very next orienting or attention movement.

But that is reminiscent of the function attributed to the
superior colliculus in the previous section. Might this midbrain
structure in fact—as first suggested in the vaguest of terms by
Denny-Brown—serve as the physiological “ego” or self in the
minimal sense just outlined? The exercise which led us to this
possibility provides an initial plausibility check on whether it
might do so. That exercise was conducted by directing attention
alone, without eye or head movements, forwards and backwards
from the egocenter lacuna, i.e., by covert attention in a full 360
degree egocentric space. The involvement of the superior collicu-
lus in covert spatial attention is well established (Robinson and
Kertzman, 1995; Cavanaugh and Wurtz, 2004; Ignashchenkova
et al., 2004; Muller et al., 2005; Fecteau and Munoz, 2006; Lovejoy
and Krauzlis, 2010; Schneider, 2011). Does it also host a full
360 degree directional compass, without which it could not have
allowed us to move covert attention to the back of our head, and
without which it cannot serve as central pivot or origin of a fully
functional multimodal and egocentrically organized localization
system (see Figure 1, and below)?

When animals are free to move their head, collicular stimu-
lation at increasingly caudal levels evokes increasingly extensive
gaze excursions beyond the oculomotor range by recruiting ever
larger head movements into the orienting response (Faulkner and
Hyde, 1958; Westheimer and Blair, 1975; Roucoux et al., 1980;
King et al., 1991; Grantyn et al., 1992; Freedman et al., 1996;
Sparks, 1999; Corneil et al., 2002; Isa and Sasaki, 2002; see also
Guitton and Volle, 1987). For natural orienting movements into
the space behind the animal, head turns by means of cumulative
rotation across increasingly caudal cervical vertebrae (Richmond
et al., 1992) are supplemented by trunk movements (Hassler and
Hess, 1954). The same recruitment of eyes, head and trunk by col-
licular stimulation is true of non-mammals (Herrero et al., 1998;
Saitoh et al., 2007). Since, as already noted, the details of move-
ment execution are left to brainstem structures downstream of
the colliculus, the colliculus itself appears to implement a space of
pure locational specification for the entire egocentric surround7.

7The primitive position of the eyes in vertebrates is lateral, on the sides of the
head, a placement exhibited by most non-mammalian and many mammalian
species. Such animals have visual fields that essentially cover their full sur-
round. The colliculus has no “reason” to contract its full field sensorimotor
organization in the minority of species whose eyes have migrated to a frontal
position. With frontally placed eyes, head movements are required to move the
visual field beyond the oculomotor range. By leaving collicular full-field orga-
nization intact, head movements can be collicularly triggered now as before by,
say, somatosensory or nociceptive stimuli to body parts beyond the reach of
vision, or sound sources localized in the rear sector of space (see also footnote
3 and references therein).

With a full collicular complement of spatial directionality, the
path is cleared for the possibility that this midbrain structure in
fact occupies the position in the neural machinery of the brain
that gives us our position as first person inhabitants of an ego-
centrically organized space of phenomenal sensory awareness,
while it itself lies outside the compass of phenomenal aware-
ness. As already detailed, though that position is the defining
feature of such a space, it cannot itself appear as a phenomenal
content within it. In fact, all phenomenal contents, as we have
seen, are separate from it, because that location defines the ulti-
mate unobservable “here” with respect to which they are located
“there.” If the superior colliculus in fact implements the direc-
tional pivot—an omnidirectional non-phenomenal “here” for all
phenomenal “theres”—how and where are those phenomenal
contents implemented, and how is the colliculus related to that
larger arrangement of which it must, on this interpretation, form
an integral part?

TETHERING PHENOMENAL SPACE TO ITS
NON-PHENOMENAL DIRECTIONAL PIVOT
In view of all that has gone before, only two possibilities remain:
the space within which sensory information achieves conscious
status, i.e., phenomenal space, is implemented either within the
colliculus itself or among the targets of its ascending projec-
tions. Regarding the first alternative, the multimodal laminar
colliculus features every modality on which animals rely for
their phasic sensory orienting. This includes exotic ones in some
species, such as infrared (Hartline et al., 1978), electroceptive
(Bastian, 1982), magnetic (Nemec et al., 2001), and echolo-
cation senses (Valentine and Moss, 1997). These modal maps,
layered cortex-like through the collicular/tectal depth dimension
(see Figure 3), share the collicular efferent premotor functional
framework in its tangential dimension. In the collicular output
layers its multiple modalities converge onto single collicular neu-
rons with cortically dependent multimodal properties (Meredith
et al., 1992; Wallace and Stein, 1994). Moreover, collicular neu-
ron numbers would seem to suffice for implementation of a
comprehensive multisensory phenomenal space. A total (bilat-
eral) neuron count of almost 2 million for the macaque supe-
rior colliculus (Théoret et al., 2001) can be extrapolated to
about 5 million for the human. This, according to the rough
estimate provided in an earlier section, should suffice for the
purpose.

There are good reasons, nevertheless, to discount the colliculus
as a serious contender for the honor of hosting our phenom-
enal sensory consciousness. The phenomenal world we inhabit
is not only crowded with intricate pattern detail, but brightly
colored and exquisitely articulated in its depth dimension both
in terms of global spatial relations and solid object shapes. The
neural operations of the superior colliculus, on the other hand,
seem concerned primarily with locational matters, to the exclu-
sion of much of this intricate and gaudy finery (but see Rizzolatti
et al., 1980). Thus macaque collicular single units dispense with
the orientation and directional specificity carried by axons of its
visual cortical afference, presumably by convergence of multiple
differently tuned cortical afferents onto single collicular units,
rendering them broadly tuned or untuned (Finlay et al., 1976).
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Regarding the color selectivity which is an absolute require-
ment for implementing human phenomenal contents, the collicu-
lus appears to lack it. Its direct retinal afference proceeds from
broad-band retinal ganglion cells, and the indirect pathway to
the colliculus via the lateral geniculate and primary visual cortex
appears likewise to be a broadband, magnocellular pathway lack-
ing color selectivity (Schiller et al., 1979). That does not mean that
collicular units lack color sensitivity, however: they respond vig-
orously to stimuli defined by isoluminant color patches alone, but
they do so without discriminating stimulus wavelength (White
et al., 2009). This color-based information appears to arrive at the
colliculus from extrastriate sources, again presumably by conver-
gence of color tuned units. This allows the colliculus to respond to
colored stimuli without representing their hue. Such an arrange-
ment fits well with its localizing function but badly with a venue
hosting multi-colored phenomenal space.

Regarding three-dimensional depth, finally, the situation is less
clear. It hinges on the thorny issue of whether or not collicular
output is a purely directional (“cyclopean”) signal, or includes a
vergence and torsional signal for the alignment of the two eyes
(van Opstal et al., 1991; Chaturvedi and Van Gisbergen, 1999;
Walton and Mays, 2003; Busettini and Mays, 2005; Waitzman
et al., 2008; Pérez Zapata et al., 2013). The parietal gaze area trans-
mits disparity information to the superior colliculus (Gnadt and
Beyer, 1998), yet collicular disparity sensitive units are broadly
tuned (Berman et al., 1975; Dias et al., 1991; Bacon et al., 1998),
perhaps again reflecting collicular pooling of cortical specificities.
These units have been found in the rostral colliculus, where fixa-
tion units are also found, so possibly they play a role in fixation
behavior. In view of the negative evidence reported for torsion by
van Opstal and colleagues and for vergence by Walton and Mays
(cited above), there would not seem to be a strong general case for
a collicular “third dimension.”

Taken together, these several strands of evidence regarding col-
licular single unit properties weigh against a collicular locus for
full, ordinary phenomenal sensory experience. The process of
elimination therefore leaves only targets of ascending collicular
projections to consider as possible candidate sites for colliculo-
phenomenal interaction. Recall that the search is for a subcortical
target of cortical layer V projections capable of relieving the cortex
of the need to precipitate a global best estimate of sensory circum-
stances within cortical probabilistic operations themselves. That
target has now been further specified “from below” as a target of
ascending collicular projections, and these are concentrated to the
thalamus (see Figure 2 and the text it illustrates).

Two further requirements must be fulfilled for a structure
to serve the cortex as its global best estimate buffer. It must
be reciprocally connected with a broad range of cortical areas
occupying the higher levels of the several cortical sensory hierar-
chies, and must contain the intrinsic circuitry needed to conduct
swift multiple constraint satisfaction operations over these corti-
cal afferents in the span of the few hundred milliseconds available
between gaze shifts (Rayner, 1998; see Merker, 2012, p. 56 for
details). The constraint satisfaction operation accordingly must
be conducted in parallel fashion (cf. Mezard and Mora, 2009)
through interactions beyond strictly local ones in the candi-
date structure. Generally, however, the thalamus is conspicuously

lacking in intrisic connectivity within or between its subdivisions
(e.g., Trojanowski and Jacobson, 1975; Ogren and Hendrickson,
1977). It therefore lacks a crucial anatomical requirement for
implementing the needed constraint satisfaction operation. There
is, however, one notable exception to this generalization.

The dorsal pulvinar of the higher-order thalamus is a multi-
modal region connected with high level posterior parietal and
temporal areas of both streams of the visual system, with audi-
tory association cortex and multimodal cortical areas, as well as
with parahippocampal, prefrontal (including frontal eye fields),
orbitofrontal, and insular cortices (Yeterian and Pandya, 1991;
Gutierrez et al., 2000; Imura and Rockland, 2006; Kaas and Lyon,
2007; see also Cappe et al., 2009). The caudal reaches of this dor-
sal pulvinar territory are invested with a unique population of
long range inhibitory interneurons (Imura and Rockland, 2006).
Their axons branch widely across the many intricately interdig-
itated slabs or discs by which cortical areas are represented there
(e.g., Asanuma et al., 1985; Hardy and Lynch, 1992). Though con-
nective detail is as yet lacking, these axons, being inhibitory, can
hardly avoid establishing competitive linkages and bridges across
these interdigitated slabs. The reach of these inhibitory interneu-
rons within the dorsal pulvinar is extra-local but less than global
(see insets in Figures 5, 6, and 8 of Imura and Rockland, 2006).
Unlikely, therefore, to operate as a winner-take-all decision mech-
anism, this inhibitory cross-connectivity may instead constitute a
powerful means of swift multiple constraint satisfaction over the
interdigitated mosaic of the cortical areas represented there (see
also Imura and Rockland, 2007).

This is also the part of the pulvinar that features neurons that
combine selectivities of both the dorsal and ventral streams of
the visual system in single neurons (Benevento and Port, 1995),
that show more selectivity for stimulus awareness than cortical
visual areas assessed with the same method (Wilke et al., 2009;
see also Padmala et al., 2010), that correlate with confidence in
sensory judgments (Komura et al., 2013), that reflect intentional
rather than routine movements (Acuña et al., 1983), and whose
reversible inactivation disrupts selection of action plans (Wilke
et al., 2010). The powerful influence of pulvinar activity over the
visual responsiveness of even V1 neurons is also worth noting
(Purushothaman et al., 2012), as is the longstanding association
of the pulvinar with sensory attention and neglect (Petersen et al.,
1987; Karnath et al., 2002; Rushmore et al., 2006; Saalmann et al.,
2012). Though it does not, of course, prove it, all of this fits
well with the conjecture that the dorsal pulvinar implements the
brain’s global best estimate of sensory circumstances in tempo-
rary buffer fashion (further circumstantial evidence bearing on
this identification is available in Merker, 2012, pp. 63–69).

Proceeding, then, on the working hypothesis that the dor-
sal pulvinar in fact performs this best estimate buffer function,
it remains to consider how the “first person” might enter its
operations. In the preceding section, this inherent aspect of sen-
sory consciousness was found to be implicated in the directional
function of covert and overt orienting by defining its implicit
(non-phenomenal) spatial origin. This suggested the collicu-
lar priority gate, with its omni-directional orienting system, as
a candidate implementing structure. It can be related to the
dorsal pulvinar via the connectivity depicted in Figure 2, by
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noting that the principal elements and connections of Stewart
Shipp’s proposed functional anatomy of the brain’s attention sys-
tem lie embedded in that connectivity (see Shipp, 2003, 2004).
In his scheme, the ventral pulvinar fills the role of princi-
pal “salience map” (Shipp, 2004, Figures 2a,g). However, to fill
that role it would need intrinsic circuitry by which to crown
a “winner” among alternate bids for target priority among its
stacked visual topographies, yet in keeping with thalamic pat-
terns generally, this pulvinar subdivision presumably lacks such
circuitry.

The functional logic of Shipp’s scheme survives this prob-
lem, however, because the requisite circuitry is available in the
superior colliculus, as we have seen. The colliculus is an inte-
gral part of his scheme, and can therefore substitute in it for
the ventral pulvinar as principal “salience map” (“priority gate”
in present terms). A collicular rather than ventral pulvinar
locus also has the advantage that it generalizes priority selec-
tion across all spatial modalities (instead of being confined to
vision alone), as it must in order to qualify as a general spatial
attention system. Moreover, as “orienting super-hub” the col-
liculus engages principally when alternative bids from a variety
of sources, not least cortical, compete for the location of the
target of an orienting or attention movement. On the present
account such competition is settled within the collicular cir-
cuitry itself, and in its deeper layers in final terms. They are
therefore the first site in the brain to “know” which loca-
tion will be the target of the next saccadic gaze shift actually
to be executed, and thus ideally situated to convey this deci-
sion to the forebrain via their ascending projections to the
thalamus.

What is conveyed to the forebrain in this way, then, can
be nothing other than the predictive “attention pointers” pro-
posed to prepare forebrain sensory maps for impending gaze
shifts peri-saccadically (for which see Wurtz, 2008; Cavanagh
et al., 2010; also Hulme et al., 2010; Prime et al., 2011). Given
that even top-down biasing of covert attentional selection in a
distractor task requires an intact superior colliculus (Lovejoy
and Krauzlis, 2010), the predictive pointer function presum-
ably is the phasic variant of a more general overt and covert
directional orienting signal conveyed to the forebrain from the
colliculus via its ascending projections. From there it propagates
as a local attentional bias shared by all relevant forebrain maps
on account of the topographic matching of their connectivi-
ties across telencephalic, diencephalic, and mesencephalic levels,
exactly as detailed in the Shipp model of the attention system
(Shipp, 2004).

The answer is now at hand to the question of how a “col-
licular self,” construed as a non-phenomenal directional pivot
for phenomenal sensory space, might relate to the proposed
implementation of that space in the dorsal pulvinar. First, the
dorsal pulvinar receives direct projections from the superior col-
liculus, originating—as they should, according to the above—in
the deeper collicular lamina (Benevento and Standage, 1983).
Second, all the gaze-related areas in cortex and basal ganglia that
receive the collicular signal via the extended intralaminar com-
plex and higher-order thalamus are bound to reflect the play of
the collicular attention/orienting pointers in their operations.

The incessant play of these pointers will therefore figure as
one of the variables in the massive operation of probabilistic
source reconstruction in which the cortex is permanently
engaged, both to decipher the immediate sensory situation
it faces from moment to moment, and for the cumulative
(learned) acquisition of the prior competence with which it
meets that challenge. This prior competence will therefore
inevitably come to reflect the invariant behind the play of
the directional attention/orienting pointers, namely the point
of origin with respect to which their directional differences
are defined. If the primary function of the dorsal pulvinar is
indeed mutual constraint satisfaction across its diverse affer-
ents, then the resulting global best estimate of sensory cir-
cumstances it produces will come to incorporate this invariant
embedded in its cortical afference, complemented by collicu-
lar afference from below. It will figure there as exactly what
in fact it is, a tacit perspective point implicit in the perspecti-
val organization of the phenomenal contents of the global best
estimate sensory buffer, without being present as a phenomenal
object in it.

This point, then, which is the point from which we look
and feel, is our tacit first person perceptual egocenter or self.
It is only the innermost of the similarly extracted invariants
behind the clusters of correlated variances which our recep-
tor surfaces present to the brain for disambiguation, and which
in their momentary global best estimate form we experience
as our body and the world which surrounds it (Merker, 2012,
p. 54; see also Philipona et al., 2003, 2004). As a product or
derivative of the lively play of collicularly triggered orienting and
attention movements, the orienting superhub in the roof of the
midbrain is its ultimate anatomical base. The decision making
machinery hypothetically incorporated into the schematic ego-
center in my previous publications (see Merker, 2012, pp. 59, 68;
Merker, 2013, pp. 19–22, and Figures 1.2 and 1.4 in particular)
accordingly is the intrinsic collicular circuitry by which the pri-
ority target of the very next orienting or attention movement is
settled.

In the scheme proposed here, this ultimate collicular pivot of
the mechanism of consciousness lies outside the anatomical struc-
ture implementing conscious contents. This provides a felicitous
fit with the phenomenal inaccessibility not only of the self that
anchors the first person perspective in which alone those contents
come to us in consciousness, but also with our lack of conscious
access to the continual split-second decision-making by which it
expresses itself in the incessant movements of our gaze across its
targets.

CONCLUSION
To summarize, the movements of our gaze or attention from a
point inside the nested structure of body within world that is our
phenomenal sensory space supplies the leading edge of practi-
cally all our behavior. Moving from target to target, it precedes
our instrumental engagement with the world like the acquisition
marker of a laser spotter in a combat zone. The point from which
the pointer proceeds is thus not only the tacit perceptual egocen-
ter or self, it is also, and without the need to make additional
assumptions, the central pivot of action control. This, then, is the
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burden of the present bid to naturalize the first person perspective
in action control by assigning a role, in the functional economy
of the brain’s efference cascade, to our tacit sense of occupying a
place inside our heads from which we survey our world and direct
the movements of our body within it.
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