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Meta-evaluation of meta-analysis: ten
appraisal questions for biologists
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Abstract

Meta-analysis is a statistical procedure for analyzing the
combined data from different studies, and can be a
major source of concise up-to-date information. The
overall conclusions of a meta-analysis, however, depend
heavily on the quality of the meta-analytic process, and
an appropriate evaluation of the quality of meta-
analysis (meta-evaluation) can be challenging. We
outline ten questions biologists can ask to critically
appraise a meta-analysis. These questions could also act
as simple and accessible guidelines for the authors of
meta-analyses. We focus on meta-analyses using non-
human species, which we term ‘biological’ meta-
analysis. Our ten questions are aimed at enabling a
biologist to evaluate whether a biological meta-analysis
embodies ‘mega-enlightenment’, a ‘mega-mistake’, or
something in between.
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ample, recent reviews have revealed that many meta-
analyses in ecology and evolution miss, or perform poorly,
Meta-analyses can be important and informative,
but are they all?
Last year saw 40 years since the coining of the term
‘meta-analysis’ by Gene Glass in 1976 [1, 2]. Meta-
analyses, in which data from multiple studies are com-
bined to evaluate an overall effect, or effect size, were first
introduced to the medical and social sciences, where
humans are the main species of interest [3–5]. Decades
later, meta-analysis has infiltrated different areas of
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biological sciences [6], including ecology, evolutionary
biology, conservation biology, and physiology. Here non-
human species, or even ecosystems, are the main focus
[7–12]. Despite this somewhat later arrival, interest in
meta-analysis has been rapidly increasing in biological
sciences. We have argued that the remarkable surge in
interest over the last several years may indicate that meta-
analysis is superseding traditional (narrative) reviews as a
more objective and informative way of summarizing
biological topics [8].
It is likely that the majority of us (biologists) have never

conducted a meta-analysis. Chances are, however, that al-
most all of us have read at least one. Meta-analysis can
not only provide quantitative information (such as overall
effects and consistency among studies), but also qualita-
tive information (such as dominant research trends and
current knowledge gaps). In contrast to that of many med-
ical and social scientists [3, 5], the training of a biologist
does not typically include meta-analysis [13] and, conse-
quently, it may be difficult for a biologist to evaluate and
interpret a meta-analysis. As with original research stud-
ies, the quality of meta-analyses vary immensely. For ex-

several critical steps that are routinely implemented in the
medical and social sciences [14, 15] (but also see [16, 17]).
The aim of this review is to provide ten appraisal ques-

tions that one should ask when reading a meta-analysis
(cf., [18, 19]), although these questions could also be used
as simple and accessible guidelines for researchers con-
ducting meta-analyses. In this review, we only deal with
‘narrow sense’ or ‘formal’ meta-analyses, where a statistical
model is used to combine common effect sizes across
studies, and the model takes into account sampling error,
which is a function of sample size upon which each effect
size is based (more details below; for discussions on the
definitions of meta-analysis, see [15, 20, 21]). Further, our
emphasis is on ‘biological’ meta-analyses, which deal with
non-human species, including model organisms (nema-
todes, fruit flies, mice, and rats [22]) and non-model
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organisms, multiple species, or even entire ecosystems.
For medical and social science meta-analyses concerning
human subjects, large bodies of literature and excellent
guidelines already exist, especially from overseeing organi-
zations such as the Cochrane (Collaboration) and the
Campbell Collaboration. We refer to the literature and the
practices from these ‘experienced’ disciplines where ap-
propriate. An overview and roadmap of this review is pre-
sented in Fig. 1. Clearly, we cannot cover all details, but
we cite key references in each section so that interested
readers can follow up.

Q1: Is the search systematic and transparently
documented?
When we read a biological meta-analysis, it used to be
(and probably still is) common to see a statement like “a
comprehensive search of the literature was conducted”
without mention of the date and type of databases the
authors searched. Documentation on keyword strings
and inclusion criteria is often also very poor, making
replication of search outcomes difficult or impossible.
Fig. 1. Mapping the process (on the left) and main evaluation questions (o
3, 4, 5 and 6) are included in the blue ovals
Superficial documentation also makes it hard to tell
whether the search really was comprehensive, and, more
importantly, systematic.
A comprehensive search attempts to identify (almost)

all relevant studies/data for a given meta-analysis, and
would thus not only include multiple major databases
for finding published studies, but also make use of vari-
ous lesser-known databases to locate reports and unpub-
lished studies. Despite the common belief that search
results should be similar among major databases, over-
laps can sometimes be only moderate. For example,
overlap in search results between Web of Science and
Scopus (two of the most popular academic databases) is
only 40–50% in many major fields [23]. As well as read-
ing that a search is comprehensive, it is not uncommon
to read that a search was systematic. A systematic search
needs to follow a set of pre-determined protocols aimed
at minimizing bias in the resulting data set. For example,
a search of a single database, with pre-defined focal
questions, search strings, and inclusion/exclusion cri-
teria, can be considered systematic, negating some bias,
n the right) for meta-analysis. References to the relevant figures (Figs. 2,
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though not necessarily being comprehensive. It is not-
able that a comprehensive search is preferable but not
necessary (and often very difficult to do) whereas a sys-
tematic search is a must [24].
For most meta-analyses in medicine and social sci-

ences, the search steps are systematic and well docu-
mented for reproducibility. This is because these studies
follow a protocol named the PRISMA (Preferred Report-
ing Items for Systematic Reviews and Meta-Analyses)
statement [25, 26]; note that a meta-analysis should usu-
ally be a part of a systematic review, although a system-
atic review may or may not include meta-analysis. The
PRISMA statement facilitates transparency in reporting
meta-analytic studies. Although it was developed for
health sciences, we believe that the details of the four
key elements of the PRISMA flow diagram (‘identifica-
tion’, ‘screening’, ‘eligibility’, and ‘included’) should also be
reported in a biological meta-analysis [8]. Figure 2
shows: A) the key ideas of the PRISMA statement, which
the reader should compare with the content of a bio-
logical meta-analysis; and B) an example of a PRISMA
diagram, which should be included as part of meta-
analysis documentation. The bottom line is that one
should assess whether search and screening procedures
are reproducible and systematic (if not comprehensive;
to minimize potential bias), given what is described in
the meta-analytic paper [27, 28].

Q2: What question and what effect size?
A meta-analysis should not just be descriptive. The best
meta-analyses ask questions or test hypotheses, as is the
case with original research. The meta-analytic questions
and hypotheses addressed will generally determine the
types of effect size statistics the authors use [29–32], as
we explain below. Three broad groups of effect size sta-
tistics are based on are: 1) the difference between the
means of two groups (for example, control versus treat-
ment); 2) the relationship, or correlation, between two
variables; and 3) the incidence of two outcomes (for ex-
ample, dead or alive) in two groups (often represented in
a 2 by 2 contingency table); see [3, 7] for comprehensive
lists of effect size statistics. Corresponding common ef-
fect size statistics are: 1) standardized mean difference
(SMD; often referred to as d, Cohen’s d, Hedges’ d or
Hedges’ g) and the natural logarithm (log) of the re-
sponse ratio (denoted as either lnR or lnRR [33]); 2)
Fisher’s z-transformed correlation coefficient (often de-
noted as Zr); and 3) the natural logarithm of the odds
ratio (lnOR) and relative risk (lnRR; not to be confused
with the response ratio).
We have also used and developed methods associated

with less common effect size statistics such as log hazard
ratio (lnHR) for comparing survival curves [34–37], and
also the log coefficient of variation ratio (lnCVR) for
comparing differences between the variances, rather than
means, of two groups [38–40]. It is important to assess
whether a study used an appropriate effect size statistic
for the focal question. For example, when the authors are
interested in the effect of a certain treatment, they should
typically use SMD or response ratio, rather than Zr. Most
biological meta-analyses will use one of the standardized
effect sizes mentioned above. These effect sizes are re-
ferred to as standardized because they are unit-less (di-
mension-less), and thus are comparable across studies,
even if those studies use different units for reporting (for
example, size can be measured by weight [g] or length
[cm]). However, unstandardized effect sizes (raw mean dif-
ference or regression coefficients) can be used, as happens
in medical and social sciences, when all studies use com-
mon and directly comparable units (for example, blood
pressure [mmHg]).
That being said, a biological meta-analysis will often bring

together original studies of different types (such as combi-
nations of experimental and observational studies). As a
general rule, SMD is considered a better fit for experimen-
tal studies, whereas Zr is better for observational (correl-
ational) studies. In some cases different effect sizes might
be calculated for different studies in a meta-analysis and
then be converted to a common type prior to analysis: for
example, Zr and SMD (and also lnOR) are inter-
convertible. Thus, if we were, for example, interested in the
effect of temperature on growth, we could combine results
from experimental studies that compare mean growth at
two temperatures (SMD) with results from observational
studies that compare growth across a temperature gradient
(Zr) in a single meta-analysis by transforming SMD from
experimental studies to Zr [29–32].

Q3: Is non-independence taken into account?
Statistical non-independence occurs when data points
(in this case, effect sizes) are somewhat related to each
other. For example, multiple effect sizes may be taken
from a single study, making such effect sizes correlated.
Failing to account for non-independence among effect
sizes (or data points) can lead to erroneous conclusions
[14, 41–44]—typically, an invalid conclusion of statistical
significance (type I error; also see Q7). Many authors do
not correct for non-independence (see [15]). There are
two main reasons for this: the authors may be unaware
of non-independence among effect sizes or they may
have difficulty in appropriately accounting for the corre-
lated structure despite being aware of the problem.
To help the reader to detect non-independence where

the authors have failed to take it into account, we have
illustrated four common types of dependent effect sizes
in Fig. 3, with the legend including a biological example
for each type. Phylogenetic relatedness (Fig. 3d) is
unique to biological meta-analyses that include multiple
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Fig. 2. Preferred Reporting Items for Systematic Reviews and Meta-Analyses. (PRISMA). a The main components of a systematic review or meta-analysis.
The data search (identification) stage should, ideally, be preceded by the development of a detailed study protocol and its preregistration. Searching at
least two literature databases, along with other sources of published and unpublished studies (using backward and forward citations, reviews, field experts,
own data, grey and non-English literature) is recommended. It is also necessary to report search dates and exact keyword strings. The screening and
eligibility stage should be based on a set of predefined study inclusion and exclusion criteria. Criteria might differ for the initial screening (title, abstract)
compared with the full-text screening, but both need to be reported in detail. It is good practice to have at least two people involved in screening, with a
plan in place for disagreement resolution and calculating disagreement rates. It is recommended that the list of studies excluded at the full-text screening
stage, with reasons for their exclusion, is reported. It is also necessary to include a full list of studies included in the final dataset, with their
basic characteristics. The extraction and coding (included) stage may also be performed by at least two people (as is recommended in
medical meta-analysis). The authors should record the figures, tables, or text fragments within each paper from which the data were
extracted, as well as report intermediate calculations, transformations, simplifications, and assumptions made during data extraction. These
details make tracing mistakes easier and improve reproducibility. Documentation should include: a summary of the dataset, information
on data and study details requested from authors, details of software used, and code for analyses (if applicable). b It is now becoming
compulsory to present a PRISMA diagram, which records the flow of information starting from the data search and leading to the final
data set. WoS Web of Science
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species [14, 42, 45]. Correction for phylogenetic non-
independence can now be implemented in several main-
stream software packages, including metafor [46].
Where non-independence goes uncorrected because of

the difficulty of appropriately accounting for the correlated
structure, it is usually because the non-independence is in-
compatible with the two traditional meta-analytic models
(the fixed-effect and the random-effects models—see Q4)
that are implemented in widely used software (for example,
Metawin [47]). Therefore, it was (and still is) common to
see averaging of non-independent effect sizes or the selec-
tion of one among several related effect sizes. These solu-
tions are not necessarily incorrect (see [48]), but may be
limiting, and clearly lead to a loss of information [14, 49].
The reader should be aware that it is preferable to model
non-independence directly by using multilevel meta-
analytic models (see Q4) if the dataset contains a sufficient
number of studies (complex models usually require a large
sample size) [14].

Q4: Which meta-analytic model?
There are three main kinds of meta-analytic models,
which differ in their assumptions about the data being
analyzed, but for all three the common and primary goal
is to estimate an overall effect (but see Q5). These
models are: i) fixed-effect models (also referred to as
common-effect models [31]); ii) random-effects models
[50]; and iii) multilevel (hierarchical) models [14, 49].
We have depicted these three kinds of models in Fig. 4.
When assessing a meta-analysis, the reader should be
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Fig. 3. Common sources of non-independence in biological meta-analyses. a–d Hypothetical examples of the four most common scenarios of
non-independence (a-d). Orange lines and arrows indicate correlations between effect sizes. Effect size estimate (gray boxes, ‘ES’) is the ratio of (or difference
between) the means of two groups (control versus treatment). Scenarios a, b, and dmay apply to other types of effect sizes (e.g., correlation), while
scenario c is unique to situations where two or more groups are compared to one control group. a Multiple effect sizes can be calculated from a single
study. Effect sizes in study 3 are not independent of each other because effects (ES3 and ES4) are derived from two experiments using samples from the
same population. For example, a study exposed females and males to increased temperatures, and the results are reported separately for the two sexes.
b Effect sizes taken from the same study (study 3) are derived from different traits measured from the same subjects, resulting in correlations among these
effect sizes. For example, body mass and body length are both indicators of body size, with studies 1 and 2 reporting just one of these measurements and
study 3 reporting both for the same group of individuals. c Effect sizes can be correlated via contrast with a common ‘control’ group of individuals; for
example, both effect sizes from study 3 share a common control treatment. A study may, for example, compare a balanced diet (control) with two levels
of a protein-enriched diet. d In a multi-species study effect sizes can be correlated when they are based on data from organisms from the same taxonomic
unit, due to evolutionary history. Effect sizes taken from studies 3 and 4 are not independent, because these studies were performed on the same species
(Sp.3). Additionally, all species share a phylogenetic history, and thus all effect sizes can be correlated with one another in accordance with time since
evolutionary divergence between species
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aware of the different assumptions each model makes.
For the fixed-effect (Fig. 4a) and random-effects (Fig. 4b)
models, all effect sizes are assumed to be independent
(that is, one effect per study, with no other sources of
non-independence; see Q3). The other major assump-
tion of a fixed-effect model is that all effect sizes share a
common mean, and thus that variation among data is
solely attributable to sampling error (that is, the sam-
pling variance, vi, which is related to the sample size for
each effect size; Fig. 4a). This assumption, however, is
unrealistic for most biological meta-analyses (see [22]),
especially those involving multiple populations, species,
and/or ecosystems [14, 51]. The use of a fixed-effect
model could be justified where the effect sizes are ob-
tained from the same species or population (assuming
one effect per study and that the effect sizes are inde-
pendent of each other). Random-effects models relax
the assumption that all studies are based on samples
from the same underlying population, meaning that
these models can be used when different studies are
likely to quantify different underlying mean effects (for
example, one study design yields a different effect than
another), as is likely to be the case for a biological meta-
analysis (Fig. 4b). A random-effects model needs to quan-
tify the between-study variance, τ2, and to estimate this
variance correctly requires a sample size of perhaps over
ten effect sizes. Thus, random-effects models may not be
appropriate for a meta-analysis with very few effect sizes,
and fixed-effect models may be appropriate in such situa-
tions (bearing in mind the aforementioned assumptions).
Multilevel models relax the assumptions of independence
made by fixed-effect and random-effects models; that is,
for example, these models allow for multiple effect sizes to
come from the same study, which may be the case if one
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Fig. 4. Visualizations of the three main types of meta-analytic models and their assumptions. a The fixed-effect model can be written as yi = b0 + ei, where
yi is the observed effect for the ith study (i= 1…k; orange circles), b0 is the overall effect (overall mean; thick grey line and black diamond) for all k studies
and ei is the deviation from b0 for the ith study (dashed orange lines), and ei is distributed with the sampling variance νi (orange curves); note that this
variance is sometimes called within-study variance in the literature, but we reserve this term for the multilevel model below. b The random-effects model
can be written as yi = b0 + si+ ei, where b0 is the overall mean for different studies, each of which has a different study-specific mean (green squares and
green solid lines), deviating by si (green dashed lines) from b0, si is distributed with a variance of τ2 (the between-study variance; green curves); note that this is
the conventional notation for the between-study variance, but in a biological meta-analysis, it can be referred to as, say, σ2[study]. The other notation is as
above. Displayed on the top-right is the formula for the heterogeneity statistic, I2 for the random-effects model, where v is a typical sampling variance
(perhaps, most easily conceptualized as the average value of sampling variances, νi). c The simplest multilevel model can be written as yij = b0 + si+ uij+ eij,
where uij is the deviation from si for jth effect size for the ith study (blue triangles and dashed blue lines) and is distributed with the variance of σ2 (the
within-study variance or it may be denoted as σ2[effect size]; blue curves), eij is the deviation from uij, and the other notations are the same as above. Each of k
studies has m effect sizes (j= 1…m). Displayed on the top-right is the multilevel meta-analysis formula for the heterogeneity statistic, I2, where both the
numerator and denominator include the within-study variance, σ2, in addition to what appears in the formula for the random-effects model
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study contains several different experimental treatments,
or the same experimental treatment is applied across spe-
cies within one study. The simplest multilevel model
depicted in Fig. 4c includes study effects, but it is probably
not difficult to imagine this multilevel approach being ex-
tended to incorporate more ‘levels’, such as species effects,
as well (for more details see [13, 14, 41, 45, 49, 51–54];
incorporating the types of non-independence described in
Fig. 3b–d requires modeling of correlation and covariance
matrices).
It is important for you, as the reader, to check

whether the authors, given their data, employed an
appropriate model or set of models (see Q3), because
results from inappropriate models could lead to erro-
neous conclusions. For example, applying a fixed ef-
fect model, when a random effects model is more
appropriate, may lead to errors in both the estimated
magnitude of the overall effect and its uncertainty
[55]. As can be seen from Fig. 4, each of the three
main meta-analytical models assume that effect sizes
are distributed around an overall effect (b0). The
reader should also be aware that this estimated over-
all effect (meta-analytic mean) is most commonly pre-
sented in an accompanying forest plot(s) [22, 56, 57].
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Figure 5a is a forest plot of the kind that is typically seen
in medical and social sciences, with both overall means
from the fixed-effect or the common effect meta-analysis
(FEMA/CEMA) model, and the random-effects meta-
analysis (REMA) model. In a multiple-species meta-analysis,
you may see an elaborate forest plot such as that in Fig. 5b.

Q5: Is the level of consistency among studies
reported?
The overall effect reported by a meta-analysis cannot be
properly interpreted without an analysis of the heterogen-
eity, or inconsistency, among effect sizes. For example, an
overall mean of zero can be achieved when effect sizes are
all zero (homogenous; that is, the between-study variance
is 0) or when all effect sizes are very different (heteroge-
neous; the between study variance is >0) but centered on
zero, and clearly one should draw different conclusions in
each case. Rather disturbingly, we have recently found that
in ecology and evolutionary biology, tests of heterogeneity
and their corresponding statistics (τ2, Q, and I2) are only
reported in about 40% of meta-analyses [58]. Cochran’s Q
(often referred to as Qtotal or QT) is a test statistic for the
between-study variance (τ2), which allows one to assess
whether the estimated between-study variance is non-zero
(in other words, whether a fixed-effect model is appropri-
ate as this model assumes τ2 = 0) [59]. As a test statistic, Q
is often presented with a corresponding p value, which is
interpreted in the conventional manner. However, if pre-
sented without the associated τ2, Q can be misleading be-
cause, as is the case with most statistical tests, Q is more
likely to be significant when more studies are included
even if τ2 is relatively small (see also Q7); the reader
should therefore check whether both statistics are pre-
sented. Having said that, the magnitude of the between-
study variance (τ2) can be hard to interpret because it is
dependent on the scale of the effect size. The heterogen-
eity statistic, I2, which is a type of intra-class correlation,
has also been recommended as it addresses some of the is-
sues associated with Q and τ2 [60, 61]. I2 ranges from 0 to
1 (or 0 to 100%) and indicates how much of the variation
in effect sizes is due to the between-study variance (τ2;
Fig. 4b) or, more generally, the proportion of variance not
attributable to sampling (error) variance (v ; see Fig. 4b, c;
for more details and extensions, see [13, 14, 49, 58]). Ten-
tatively suggested benchmarks for I2 are low, medium, and
high heterogeneity of 25, 50, and 75% [61]. These values
are often used in meta-analyses in medical and social sci-
ences for interpreting the degree of heterogeneity [62, 63].
However, we have shown that the average I2 in meta-
analyses in ecology and evolution may be as high as 92%,
which may not be surprising as these meta-analyses are
not confined to a single species (or human subjects) [58].
Accordingly, the reader should consider whether these
conventional benchmarks are applicable to the biological
meta-analysis under consideration. The quantification and
reporting of heterogeneity statistics is essential for any
meta-analysis, and you need to make sure some or
combinations of these three statistics are reported in a
meta-analysis before making generalisations based on the
overall mean effect (except when using fixed-effect models).

Q6: Are the causes of variation among studies
investigated?
After quantifying variation among effect sizes beyond
sampling variation (I2 ), it is important to understand the
factors, or moderators, that might explain this additional
variation, because it can elucidate important processes
mediating variation in the strength of effect. Moderators
are equivalent to explanatory (independent) variables or
predictors in a normal linear model [8, 49, 62]. For ex-
ample, in a meta-analysis examining the effect of experi-
mentally increased temperature on growth using SMD
(control versus treatment comparison) studies might vary
in the magnitude of temperature increase: say 10 versus
20 °C in the first study, but 12 versus 16 °C in the second.
In this case, the moderator of interest is the temperature
difference between control and treatment groups (10 °C
for the first study and 4 °C for the second). This difference
in study design may explain variation in the magnitude of
the observed effect sizes (that is, the SMD of growth at
the two temperatures). Models that examine the effects of
moderators are referred to as meta-regressions. One im-
portant thing to note is that meta-regression is just a spe-
cial type of weighted regression. Therefore, the usual
standard practices for regression analysis also apply to
meta-regression. This means that, as a reader, you may
want to check for the inclusion of too many predictors/
moderators in a single model, or ‘over-fitting’ (the rule of
thumb is that the authors may need at least ten effect sizes
per estimated moderator) [64], and for ‘fishing expedi-
tions’ (also known as ‘data dredging’ or ‘p hacking’; that is,
non-hypothesis-based exploration for statistical signifi-
cance [28, 65, 66]).
Moderators can be correlated with each other (that is,

be subject to the multicollinearity problem) and this de-
pendence, in turn, could lead authors to attribute an effect
to the wrong moderator [67]. For example, in the afore-
mentioned meta-analysis of temperature on growth, the
study may claim that females grew faster than males when
exposed to increased temperatures. However, if most fe-
males came from studies where higher temperature in-
creases were used but males were usually exposed to small
increases, the moderators for sex and temperature would
be confounded. Accordingly, the effect may be due to the
severity of the temperature change rather than a sex effect.
Readers should check whether the authors have examined
potential confounding effects of moderators and reported
how different potential moderators are related to one
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Fig. 5. Examples of forest plots used in a biological meta-analysis to represent effect sizes and their associated precisions. a A conventional forest
plot displaying the magnitude and uncertainty (95% confidence interval, CI) of each effect size in the dataset, as well as reporting the associated
numerical values and a reference to the original paper. The sizes of the shapes representing point estimates are usually scaled based on their
precision (1/Standard error). Diamonds at the bottom of the plot display the estimated overall mean based on both fixed-effect meta-analysis/
‘common-effect’ meta-analysis (FEMA/CEMA) and random-effects meta-analysis (REMA) models. b A forest plot that has been augmented to
display a phylogenetic relationship between different taxa in the analysis; the estimated d seems on average to be higher in some clades than in
the others. A diamond at the bottom summarizes the aggregate mean as estimated by a multi-level meta-analysis accounting for the given
phylogenetic structure. On the right is the number of effect sizes for each species (k), although similarly one could also display the number of
individuals/sample-size (n), where only one effect size per species is included. c As well as displaying overall effect (diamond), forest plots are
sometimes used to display the mean effects from different sub-groups of the data (e.g., effects separated by sex or treatment type), as estimated
with data sub-setting or meta-regression, or even a slope from meta-regression (indicating how an effect changes with increasing continuous
variable, e.g., dosage). d Different magnitudes of correlation coefficient (r), and associated 95% CIs, p values, and the sample size on which each
estimate is based. The space is shaded according to effect magnitude based on established guidelines; light grey, medium grey, and dark grey
correspond to small, medium, and large effects, respectively
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another. It is also important to know the sources of the
moderator data; for example, species-specific data can be
obtained from sources (papers, books, databases) other
than the primary studies from which effect sizes were
taken (Q1). Meta-regression results can be presented in a
forest plot, as in Fig. 5c (see also Q6 and Fig. 6e, f; the
standardization of moderators may often be required for
analyzing moderators [68]).
Another way of exploring heterogeneity is to run sep-

arate meta-analysis on data subsets (for example, separ-
ating effect sizes by the sex of exposed animals). This is
similar to running a meta-regression with categorical
moderators (often referred to as subgroup analysis), with
the key difference being that the authors can obtain het-
erogeneity statistics (such as I2) for each subset in a
subset analysis [69]. It is important to note that many
meta-analytic studies include more than one meta-analysis,
because several different types of data are included, even
though these data pertain to one topic (for example, the ef-
fect of increased temperature not only on body growth, but
also on parasite load). You, as a reader, will need to evaluate
whether the authors’ sub-grouping or sub-setting of their
data makes sense biologically; hopefully the authors will
have provided clear justification (Q1).

Q7: Are effects interpreted in terms of biological
importance?
Meta-analyses should focus on biological importance
(which is reflected in estimated effects and their uncer-
tainties) rather than on p values and statistical signifi-
cance, as is outlined in Fig. 5d [29, 70–72]. It should be
clear to most readers that interpreting results only in
terms of statistical significance (p values) can be mis-
leading. For example, in terms of effects’ magnitudes
and uncertainties, ES4 and ES6 in Fig. 5d are nearly
identical, yet ES4 is statistically significant, while ES6 is
not. Also, ES1–3 are all what people describe as ‘highly
significant’, but their magnitudes of effect, and thus bio-
logical relevance, are very different. The term ‘effective
thinking’ is used to refer to the philosophy of placing
emphasis on the interpretation of overall effect size in
terms of biological importance rather than statistical sig-
nificance [29]. It is useful for the reader to know that
each of ES1–3 in Fig. 5d can be classified as what Jacob
Cohen proposed as small, medium, and large effects,
which are r = 0.1, 0.3, and 0.5, respectively [73]; for
SMD, corresponding benchmarks are d (SMD) = 0.2, 0.5,
and 0.8 [29, 61]. Researchers may have good intuition
for the biological relevance of a particular r value, but
this may not be the case for SMD. Thus, it may be help-
ful to know that Cohen’s benchmarks for r and d are
comparable. Having said that, these benchmarks, along
with those for I2, have to be used carefully, because what
constitute biologically important effect magnitudes can
vary according to the biological questions and systems
(for example, 1% difference in fitness would not matter
in ecological time but it certainly does over evolutionary
time). We stress that authors should primarily be dis-
cussing their effect sizes (point estimates) and uncertain-
ties in terms of point estimates (confidence intervals, or
credible intervals, CIs) [29, 70, 72]. Meta-analysts can
certainly note statistical significance, which is related to
CI width, but direct description of precision may be
more useful. Note that effect magnitude and precision
are exactly what are displayed in forest plots (Fig. 5).

Q8: Has publication bias been considered?
Meta-analysts have to assume that research is published
regardless of statistical significance, and that authors
have not selectively reported results (that is, that there is
no publication bias and no reporting bias) [74–76]. This
is unlikely. Therefore, meta-analysts should check for
publication bias using statistical and graphical tools. The
reader should know that the commonly used methods
for assessing publication bias are funnel plots (Fig. 6a,
b), radial (Galbraith) plots (Fig. 6c), and Egger’s (regres-
sion) tests [57, 77, 78]; these methods visually or statisti-
cally (Egger’s test) help to detect funnel asymmetry,
which can be caused by publication bias [79]. However,
you should also know that funnel asymmetry may be an
artifact of too few a number of effect sizes. Further, fun-
nel asymmetry can result from heterogeneity (non-zero
between-study variance, τ2) [77, 80]. Some readily-
implementable methods for correcting for publication
bias also exist, such as trim-and-fill methods [81, 82] or
the use of the p curve [83]. The reader should be aware
that these methods have shortcomings; for example, the
trim-and-fill method can under- or overestimate an
overall effect size, while the p curve probably only works
when effect sizes come from tightly controlled experi-
ments [83–86] (see Q9; note that ‘selection modeling’ is
an alternative approach, but it is more technically diffi-
cult [79]). A less contentious topic in this area is the
time-lag bias, where the magnitudes of an effect dimin-
ish over time [87–89]. This bias can be easily tested with
a cumulative meta-analysis and visualized using a forest
plot [90, 91] (Fig. 6d) or a bubble plot combined with
meta-regression (Fig. 6e; note that journal impact factor
can also be associated with the magnitudes of effect sizes
[92], Fig. 6f ).
Alarmingly, meta-reviews have found that only half of

meta-analyses in ecology and evolution assessed publica-
tion bias [14, 15]. Disappointingly, there are no perfect
solutions for detecting and correcting for publication
bias, because we never really know with certainty what
kinds of data are actually missing (although usually sta-
tistically non-significant and small effect sizes are under-
represented in the dataset; see also Q9). Regardless, the
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Fig. 6. (See legend on next page.)
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Fig. 6. Graphical assessment tools for testing for publication bias. a A funnel plot showing greater variance among effects that have larger standard
errors (SE) and that are thus more susceptible to sampling variability. Some studies in the lower right corner of the plot, opposite to most major
findings, with large SE (less likely to detect significant results) are potentially missing (not shown), suggesting publication bias. b Often funnel plots are
depicted using precision (1/SE), giving a different perspective of publication bias, where studies with low precision (or large SE) are expected to show
greater sampling variability compared to studies with high precision (or low SE). Note that the data in panel b are the same as in panel a, except that
a trim-and-fill analysis has been performed in b. A trim-and-fill analysis estimates the number of studies missing from the meta-analysis and creates
‘mirrored’ studies on the opposite side of the funnel (unfilled dots) to estimate how the overall effect size estimate is impacted by these missing studies.
c Radial (Galbraith) plot in which the slope should be close to zero, if little publication bias exists, indicating little asymmetry in a corresponding funnel
plot (compare it with b); radial plots are closely associated with Egger’s tests. d Cumulative meta-analysis showing how the effect size changes as the
number of studies on a particular topic increases. In this situation, the addition of effect size estimates led to convergence on an overall estimate of
0.36, and the confidence intervals decrease as the precision of the estimate increases. e Bubble plot showing a temporal trend in effect size (Zr) across
years. Here effect sizes are weighted by their precision; larger bubbles indicate more precise estimates and smaller bubbles less precise. f Bubble plot
of the relationship between effect size and impact factors of journals, indicating that larger magnitudes of effect sizes (the absolute values of Zr) tend
to be published in higher impact journals
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existing tools should still be used and the presentation
of results from at least two different methods is
recommended.
Q9: Are results really robust and unbiased?
Although meta-analyses from the medical and social sci-
ences are often accompanied by sensitivity analysis [69, 93],
biological meta-analyses are often devoid of such tests. Sen-
sitivity analyses include not only running meta-analysis and
meta-regression without influential effect sizes or studies
(for example, many effect sizes that come from one study
or one clear outlier effect size; sometimes also termed
‘subset analysis’), but also, for example, comparing meta-
analytic models with and without modeling non-
independence (Q3–5), or other alternative analyses [44, 93].
Analyses related to publication bias could generally also be
regarded as part of a sensitivity analysis (Q8). In addition, it
is worthwhile checking if the authors discuss missing data
[94, 95] (different from publication bias; Q8). Two major
cases of missing data in meta-analysis are: 1) a lack of the
information required to obtain sampling variance for a por-
tion of the dataset (for example, missing standard devia-
tions); and 2) missing information for moderators [96] (for
example, most studies report the sex of animals used but a
few studies do not). For the former, the authors should run
models both with and without data with sampling variance
information; note that without sampling variance (that is,
unweighted meta-analysis) the analysis becomes a normal
linear model [21]. For both cases 1 and 2, the authors could
use data imputation techniques (as of yet, this is not stand-
ard practice). Although data imputation methods are rather
technical, their implementation is becoming easier [96–98].
Furthermore, it may often be important to consider the
sample size (the number and precision of constituent effect
sizes) and statistical power of a meta-analysis. One of the
main reasons to conduct meta-analysis is to increase
statistical power. However, where an overall effect is ex-
pected to be small (as is often the case with biological
phenomena) it is possible that a meta-analysis may be
underpowered [99–101].
Q10: Is the current state (and lack) of knowledge
summarized?
In the discussion of a meta-analysis, it is reasonable to
expect the authors to discuss what conventional
wisdoms the meta-analysis has confirmed or refuted and
what new insights the meta-analysis has revealed [8, 19,
71, 100]. New insights from meta-analyses are known as
‘review-generated evidence’ (as opposed to ‘study-gener-
ated evidence’) [18] because only aggregation of studies
can generate such insights. This is analogous to com-
parative analyses bringing biologists novel understanding
of a topic which would be impossible to obtain from
studying a single species in isolation [14]. Because meta-
analysis brings available (published) studies together in a
systematic and/or comprehensive way (but see Q1), the
authors can also summarize less quantitative themes
along with the meta-analytic results. For example, the
authors could point out what types of primary studies
are lacking (that is, identify knowledge gaps). Also, the
study should provide clear future directions for the topic
under investigation [8, 19, 71, 100]; for example, what
types of empirical work are required to push the topic
forward. An obvious caveat is that the value of these
new insights, knowledge gaps and future directions is
contingent upon the answers to the previous nine ques-
tions (Q1–9).
Post meta-evaluation: more to think about
Given that we are advocates of meta-analysis, we are
certainly biased in saying ‘meta-analyses are enlight-
ening’. A more nuanced interpretation of what we
really mean is that meta-analyses are enlightening
when they are done well. Mary Smith and Gene Glass
published the first research synthesis carrying the
label of ‘meta-analysis’ in 1977 [102]. At the time,
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their study and the general concept was ridiculed
with the term ‘mega-silliness’ [103] (see also [16, 17]).
Although the results of this first meta-analysis on the
efficacy of psychotherapies still stand strong, it is pos-
sible that a meta-analysis contains many mistakes. In
a similar vein, Robert Whittaker warned that the
careless use of meta-analyses could lead to ‘mega-mis-
takes’, reinforcing his case by drawing upon examples
from ecology [104, 105].
Even where a meta-analysis is conducted well, a future

meta-analysis can sometimes yield a completely opposing
conclusion from the original (see [106] for examples from
medicine and the reasons why). Thus, medical and social
scientists are aware that updating meta-analyses is ex-
tremely important, especially given that time-lag bias is a
common phenomenon [87–89]. Although updating is still
rare in biological meta-analyses [8], we believe this should
become part of the research culture in the biological sci-
ences. We appreciate the view of John Ioannidis who
wrote, “Eventually, all research [both primary and meta-
analytic] can be seen as a large, ongoing, cumulative
meta-analysis” [106] (cf. effective thinking; Fig. 6d).
Finally, we have to note that we have just scratched

the surface of the enormous subject of meta-analysis.
For example, we did not cover other relevant topics such
as multilevel (hierarchical) meta-analytic and meta-
regression models [14, 45, 49], which allow more com-
plex sources of non-independence to be modeled, as
well as multivariate (multi-response) meta-analyses [107]
and network meta-analyses [108]. Many of the ten ap-
praisal questions above, however, are also relevant for
these extended methods. More importantly, we believe
that asking the ten questions above will readily equip bi-
ologists with the knowledge necessary to differentiate
among mega-enlightenment, mega-mistakes, and some-
thing in-between.
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