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The central problems that goal-directed animals must solve are: ‘What do I

need and Why, Where and When can this be obtained, and How do I get

it?’ or the H4W problem. Here, we elucidate the principles underlying the

neuronal solutions to H4W using a combination of neurobiological and neu-

rorobotic approaches. First, we analyse H4W from a system-level perspective

by mapping its objectives onto the Distributed Adaptive Control embodied

cognitive architecture which sees the generation of adaptive action in the

real world as the primary task of the brain rather than optimally solving

abstract problems. We next map this functional decomposition to the archi-

tecture of the rodent brain to test its consistency. Following this approach,

we propose that the mammalian brain solves the H4W problem on the

basis of multiple kinds of outcome predictions, integrating central represen-

tations of needs and drives (e.g. hypothalamus), valence (e.g. amygdala),

world, self and task state spaces (e.g. neocortex, hippocampus and prefrontal

cortex, respectively) combined with multi-modal selection (e.g. basal

ganglia). In our analysis, goal-directed behaviour results from a well-

structured architecture in which goals are bootstrapped on the basis of

predefined needs, valence and multiple learning, memory and planning

mechanisms rather than being generated by a singular computation.
1. Introduction
Instrumental actions can be either habitual or goal-directed. In order to label an

action goal-directed, it must satisfy two requirements. First, the agent must dis-

play knowledge of the causal efficacy of its own actions and their outcomes given

the current state or context. Second, the agent must select and regulate its behav-

iour using goal representations, e.g. internally generated representations of

desired action outcomes. In other words, such deliberate action is directed

towards specific states of the external world, i.e. goals, motivated by states of

the internal environment and mediated by internal representations of these

goals. Goal-oriented action expresses agency, mental states and is intentional

following the nineteenth century philosopher Franz Brentano. A fundamental

nature challenge in psychology and neuroscience is to develop a coherent expla-

nation of goal-directed action. This has turned out to be difficult as the history

of the study of behaviour illustrates. During behaviourism, constructs such as

‘intention’ or ‘goal’ with their associated teleology were seen as unscientific

and were thus eliminated. With the cognitive revolution, these notions were

again incorporated in the terminology of mind and brain [1] but the mechanistic

functioning and neuronal underpinnings of goal-directed behaviour remained

largely unknown. In the perspective of symbolic artificial intelligence (AI),

knowledge and goals are organized following a principle of rationality: ‘. . .

if the system wants to attain goal G and knows that to do act A will lead to
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attaining G, then it will do A. This law is a simple form of

rationality that an agent will operate in its own best interest

according to what it knows’ [2, p. 49]. In this case, however,

the problem was that ‘goals’, ‘knowledge’ and ‘actions’ were

all defined a priori and the explanation of cognition limited

itself to the operations that could be performed on these sym-

bolic representations. No commitments were made to their

etiology and the question thus becomes how an agent can auton-

omously acquire or define these core elements of cognition [3].

The explanation of goal-oriented behaviour is not only of

interest because of the complexity of the associated phenom-

ena but also because it is at the edge of phenomenology and

science. As much as there is a ‘hard problem’ in the expla-

nation of consciousness [4,5], we can argue that a similar

explanatory gap exists in understanding goal-oriented behav-

iour, it also critically depends on inferences by the observer

on the beliefs an organism entertains with respect to its

goals and tasks. The fundamental challenge is to explain this

phenomenon while acknowledging the full richness of its

intentional aspects, avoiding the behaviourist fallacy. Conver-

sely, our explanation should include the genesis of goals as

opposed to assuming them a priori to avoid the trap of

symbol grounding of traditional AI. This paper tries to directly

answer these challenges by addressing the notion of goals and

their role in cognition and action from an integrative perspec-

tive building on three components: (i) an evolutionarily

motivated hypothesis on brain function and action; (ii) an embo-

died theory of mind and brain called distributed adaptive

control (DAC), and (iii) a detailed system-level analysis of the

neuronal substrates of goal-oriented behaviour in the rodent.

In this integration, we take as our specific question whether

goals should be seen as single scalar functions against which be-

haviour is optimized or whether they are multi-dimensional

processes that emerge from the interaction across a number of

perceptual, affective, cognitive and motor systems (see also

[6]). We advocate the latter interpretation and show that goals

and their impact on ongoing and future behaviour should be

seen as resulting from a process that plays out at multiple

levels of the neuraxis following distinct principles.

Goal-directed behaviour is unique and distinct from other

forms of control such as innate reflexes and habits in the

sense that it does not prescribe a specific operation or pro-

cedure but rather the end state that an operation should

achieve. Goal-directed choice permits an agent to escape

from stereotyped interactions with a predictable environment

and flexibly and rapidly adapt to complex and dynamic

internal (e.g. motivational) and environmental conditions

using abstract allocentric procedures and prospection. This

fact is epitomized in experimental procedures such as reward

devaluation [7]. Here, a rat is first trained to press a lever to

obtain a food reward. After reaching the learning criterion,

the rat is given the same reward but now ‘devaluated’,

e.g. coupled to a nausea inducing treatment. When the rat is

subsequently placed again in front of the lever, it can either

display the habit of the previously acquired lever-pressing

action or display goal-oriented (in)action by avoiding to press

the lever. Rats are able to suppress the acquired response.

This example illustrates the two hallmarks of goal-directed

choice: agency and intentionality. It also shows that goal-

directed choice is a systems property that depends on a

number of tightly coupled processes including perception,

motivation, emotion, cognition and action. It cannot be loca-

lized to a central ‘goal nucleus’ in the brain but rather
depends on the interplay of a number of mechanisms realized

in several brain areas. As a result, understanding goal-directed

choice requires a systems-level architectural treatment and

recent advances have clarified the possible contributions of

specific components of this architecture [8,9]. However, it is

less clear how the contributions of these different brain areas

are orchestrated to generate actions that lead to goal achieve-

ment in the real world and how goal-directed mechanisms

coexist with other non-goal-based ones. Here, we propose

a systems-level solution to the challenge of goal-directed

choice from combined experimental neurophysiological and

theoretical perspectives.

In order to create structure in the tangle of neuronal pro-

cesses and sub-processes that make up the brain and their

multi-level organization, we need to define unambiguously

what the overall function of this system is. Here, we follow

Claude Bernard and Ivan Pavlov in defining the brain as a

control system that maintains a metastable balance between

the internal world of the body and the external world

through action. The question thus becomes: ‘does it take to

act?’ We propose that in order to act in the external world,

the brain needs to optimize a specific set of objectives

which are captured in answering the questions: ‘Why do I

need to act? What do I need? Where and When can this be

obtained and How do I get it?’ These questions harbour a

complex set of computational challenges that can be defined

as the H4W problem [10]. In short, an animal needs to deter-

mine a behavioural procedure to achieve a goal state (the

How of action), which in turn requires defining the ‘Why’

(the motivation for action in terms of needs, drives and

goals), ‘What’ (the objects and their affordances in the

world that pertain to these goals), ‘Where’ (the location of

objects in the world, the spatial configuration of the task

domain and the location and confirmation of the self ) and

‘When’ (the sequencing and timing of action relative to the

dynamics of the world and self ). We propose that goal-

oriented action in the physical world emerges from the

interplay of the different processes subserving H4W. Action

in a social world would also require processing ‘Who’, but

this aspect will not be dealt with here [11].

Each of the Ws can be seen as a specific objective that the

brain must satisfy, to which it designates a large set of sub-

objectives of varying complexity, which are laid out in parallel

across different levels and scales of organization of the central

nervous system. At a first level, the brain must assess the moti-

vational states derived from homeostatic self-essential

variables. These motivational states in turn need to be priori-

tized so that goals can be set: this is the ‘Why’ problem,

requiring the modulation of associated behaviour systems.

Next, a second layer of control is called for to classify, categor-

ize and valuate states of the world, to identify the spatial layout

of the task, including the agent itself, and the dynamics of the

task and its affordances: ‘What’, ‘Where’, ‘When’. Lastly, these

labelled multi-modal states are grouped in sequences around

prioritized goals; for example, in a rodent navigation set-up,

to go towards and push a lever, placed at the northeast

corner of the environment, given that the cue signal has

appeared. At this stage, the ‘How’ has been generated and

expressed. Using the accumulated spatio-temporal knowledge

of the task and the self in which goal pursuit is framed, a pro-

cedural motor strategy (‘How’) can be composed and its

elements selected from the set of available options to achieve

a goal state. We propose that the H4W framework outlined
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above is an exclusive set of processes that captures the essential

brain mechanisms that mediate and control instrumental inter-

action with the physical world. We will now show how H4W

maps onto a biologically grounded cognitive architecture that

will further facilitate to show how we can make sense of the

intricate neuronal substrates of goal-oriented behaviour.

(a) The distributed adaptive control theory of mind
and brain

To map the functional H4W hypothesis to potential neuronal

substrates of goal-oriented behaviour, we first decompose

it in terms of a hypothetical neuronal architecture of

the mammalian brain called DAC1 (figure 1, see [10] for a

review). The DAC theory emphasizes that perception,

emotion, cognition and action are realized through an inte-

grated control system that is both embodied and situated in

the real world. In this perspective, goal-directed choice is

not a monolithic component but depends critically on the

interaction between several layers of control, each of which

uses specific information (e.g. motivational and sensory

versus memory and prospection) to generate and maintain

goal representations at varying levels of abstraction that

cooperate and compete for the control of action [13]. Thus,

from the DAC perspective, drives and goals are necessarily

organized in a hierarchical fashion, starting with the concrete

needs defined by the physical instantiation of the agent,

i.e. the nutrients required to maintain the body, to the

abstract goals of reaching specific but also abstract goal

states, such as for example, having dinner in a specific restau-

rant or becoming an expert on Byzantine culture. The latter

are seen as being bootstrapped on the basis of the former.

Below we introduce the layered organization of DAC and dis-

cuss how it constitutes a coherent architectural solution to the

H4W problem of goal-directed behaviour.

The somatic level (SL) of DAC designates the body itself and

defines three fundamental processes: exosensing of states of the

environment, endosensing of states of the body or essential vari-

ables of survival, defining needs and actuation through control

of the skeletal-muscle system. Behaviour is defined as a

change in the confirmation and/or position of the SL.

The reactive layer (RL) of DAC supports the basic function-

ality of the SL and generates control signals that drive and

modulate the engagement of higher control layers and their

epistemic functions [14] (figure 1, lower right panel). These

sensorimotor loops are organized in fundamental and oppos-

ing behaviour systems that support basic needs such as fight,

flight [15], seek and play [16]. Every behaviour system is

homeostatic but importantly their collective properties are in

turn regulated by an integrative allostatic loop [17,18]. This allo-

static orchestration (see figure 1) is critical to goal-oriented

behaviour because both at a behavioural and physiological

level, different homeostatic subsystems are in a competitive

relationship and priorities and hierarchies must be established

on the fly dependent on internal needs, external threats and

opportunities. In order to control behaviour, the states of the

behaviour systems have a specific neural representation that

distributes them across space, called an affordance gradient,
such as the ‘attractive force’ of the home position or the ‘repel-

lant force’ of a predator, that thus implicitly encodes action in

an egocentric frame of reference [19]. DAC thus sees the reac-

tive agent as operating in a composite behavioural field

defined by the dominant behavioural subsystems and their
internal representation of affordance gradients. This mechan-

ism links well to the idea of force-field-based control as used

in the individual behaviour systems (BS) of RL. This idea has

its roots in Gestalt psychology [20] and is a standard approach

towards robot navigation [21] but generalizes towards optimal

path planning in mobile robots [22] and social interaction in

humanoid robots [23].

The adaptive layer (AL) of DAC extends the predefined

need-reducing sensorimotor loops of the RL with value-

dependent acquired sensor and action states. It allows the

agent to escape from the strictly predefined and instantaneous

reflexes of RL through learning [24,25]. The AL constructs a

state space encoding of both the external (world) and internal

(self) a priori unpredictable environment and shapes the ampli-

tude-time course of the predefined RL reflexes. It crucially

relies on distal sensors, e.g. vision and audition. The acquired

sensor and motor states are in turn associated through the

valence states triggered by the RL, following the paradigm of

classical conditioning where initially neutral or conditioned

stimuli (CS) obtain the ability to trigger actions, or conditioned

reponses (CR), by virtue of their contingent presentation with

intrinsically motivational stimuli or unconditioned stimuli

(US) [12]. In particular, the AL explains the principles under-

lying the two-phase theory of classical conditioning [26]

combining the, so-called, non-specific and specific learning

systems into one integrate behavioural architecture. DAC’s

AL predicts that the former plays a key role in value-dependent

stimulus identification in addition to the preparation for action,

while the later is dependent on the former and critical for

timing rather than ‘consumption’ [27]. The AL allows the

agent to overcome the predefined behavioural repertoire of

the RL and to engage an a priori unpredictable world, solving

the notorious symbol grounding that led to the demise of

classical AI [3,28].

The learning dynamics of the AL are defined in terms of

minimization of the prediction error between acquired and

encountered states of the world relying on local Hebbian

learning [24]. This approach has been rephrased in a general

formal framework called correlative subspace learning (CSL)

where the associations between perceptual states and action

are mediated via value representations and perception-

value associations are formed on the basis of both perceptual

and behavioural prediction [25]. CSL is consistent with

‘predictive brain’ frameworks and ‘free energy minimization’

principles [29,30]. Importantly, DAC demonstrates these

principles within an embodied cognitive architecture. Exper-

iments with AL have three important consequences for our

understanding of goal-oriented behaviour. First, prediction-

error minimization is a multi-scale process that needs to

operate in concert with dedicated processes for behaviour

control and exploration provided by the RL. Second, predic-

tion-based learning is crucial in real-world behaving systems

in order to counteract behavioural feedback, i.e. non-neuronal

feedback resulting from both the high spatio-temporal correla-

tion in sensory streams combined with experience-dependent

biased sampling of the sensory space [13,24]. Third, the strict

distinction between retrospective model-free and prospective

model-based decision-making is misleading in the sense

that in both cases, the state space on which decision-making

operates is defined based on models albeit of varying

spatio-temporal complexity [31].

AL extends the need-reducing sensorimotor loops of RL

into acquired sense-valence-act triplets that include a priori

http://rstb.royalsocietypublishing.org/


Figure 1. The DAC theory of mind and brain (see [10] for a review). Left: highly abstract representation of the DAC architecture. DAC proposes that the brain is
organized as a three-layered control structure with tight coupling within and between these layers distinguishing: the soma (SL) and the reactive (RL), adaptive (AL)
and contextual (CL) layers. Across these layers, a columnar organization exists that deals with the processing of states of the World or exteroception (left, red), the
self or interoception (middle, blue) and action (right, green). See text for further explanation. The reactive layer: the RL comprises dedicated behaviour systems (BS)
that combine predefined sensorimotor mappings with drive reduction mechanisms that are predicated on the needs of the body (SL). Right lower panel: each BS
follows homeostatic principles supporting the self-essential functions (SEF) of the body (SL). In order to map needs into behaviours, the strength of the essential
variables served by the BSs, SEFs, have a specific distribution in task-space called an ‘affordance gradient’. In this example, we consider the (internally represented)
‘attractive force’ of the home position supporting the security SEF or of open space defining the exploration SEF. The values of the respective SEFs are defined by the
difference between the sensed value of the affordance gradient (red) and its desired value given the prevailing needs (blue). The regulator of each BS defines the
next action as to perform a gradient ascent on the SEF. An integration and action selection process across the different BSs forces a strict winner-take-all decision that
defines the specific behaviour emitted. The allostatic controller of the RL regulates the internal homeostatic dynamic of the BSs to set priorities defined by needs and
environmental opportunities through the modulation of the affordance gradients, desired values of SEFs and/or the integration process. The adaptive layer: the AL
acquires a state space of the agent – environment interaction and shapes action. The learning dynamic of AL is constrained by the SEFs of the RL that define value.
The AL crucially contributes to exosensing by allowing the processing of states of distal sensors, e.g. vision and audition, which are not predefined but rather are
tuned in somatic time to properties of the interaction with the environment. Acquired sensor and motor states are in turn associated through the valence states
signalled by the RL. The contextual layer: the core processes of the CL are divided between a task-model and a self-model. The CL expands the time horizon in
which the agent can operate through the use of sequential short-term and long-term memory (STM and LTM) systems respectively. These memory systems operate
on integrated sensorimotor representations that are generated by the AL and acquire, retain and express goal-oriented action regulated by the RL. The CL comprises
a number of processes (right upper panel): (a) when the discrepancy between predicted and encountered sensory states falls below a STM acquisition threshold, the
perceptual predictions (red circle) and motor activity (green rectangle) generated by AL are stored in STM as a, so-called, segment. The STM acquisition threshold is
defined by the time-averaged reconstruction error of the perceptual learning system of AL. (b) If a goal state (blue flag) is reached, e.g. reward or punishment, the
content of STM is retained in LTM as a sequence conserving its order, goal state and valence marker, e.g. aversive or appetitive, and STM is reset. Every sequence is
thus labelled with respect to the specific goal it pertains to and its valence marker. (c) If the outputs generated by the RL and AL to action selection are sub-
threshold, the AL perceptual predictions are matched against those stored in LTM. (d) The CL selected action is defined as a weighted sum over the segments of LTM.
(e) The contribution of LTM segments to decision-making depends on four factors: perceptual evidence, memory chaining, the distance to the goal state and valence.
Working memory (WM) of the CL is defined by the memory dynamics that represents these factors. Active segments that contributed to the selected action are
associated with those that were previously active establishing rules for future chaining. The self-model component of the CL monitors task performance and develops
(re)descriptions of task dynamics anchored in the self. In this way, the system generates meta-representational knowledge that forms autobiographical memory. This
aspect of the DAC CL is not further considered in this paper.
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unknown but now acquired states of the world and the self.

This adaptation occurs in a restricted temporal window of

relatively immediate interaction, i.e. up to about 1 s, which

is the range in which most forms of classical conditioning

operate. DAC predicts that this temporal boundary is depen-

dent on the characteristic time constants of cerebellar learning

loops [32]. However, in order to escape from the ‘now’ and

value-dependent interaction with the world and develop

goals in an expanded spatio-temporal window, more

advanced memory systems must be engaged: the contextual

layer (CL).

The CL of DAC acquires, retains and expresses behaviour-

al plans by combining sequences of AL-defined sensorimotor

states with goals in a value-dependent way (figure 1, upper

right panel). The CL comprises a dual representational

system: one for representations of tasks and the other for

representing the self. The former comprises systems for

short-term, long-term and working memory (STM, LTM

and WM, respectively), while the latter combines a monitor-

ing system of the Task Space with an autobiographical

memory. The task space memory systems allow for the for-

mation of sequential representations conditional on the goal

achievement of the agent. CL behavioural plans can be

recalled through sensory matching and internal chaining

among the elements of the retained memory sequences (see

figure 1). The dynamic states that this process entails define

DAC’s WM. The CL organizes LTM along behavioural goals

and previous studies have assessed that this together with

valence labelling of LTM segments is required, in order to

obtain a Bayesian optimal solution to foraging problems [3].

Goals are formed through the integration of sensorimotor

states with the termination conditions of behavioural patterns

defined through need-reduction and value systems of the RL

and AL, respectively. Goals are initially defined in terms of

the drives that are guiding the behaviour systems of the RL

such as finding a food item, or solving an impasse, i.e. flight,

and the valence that they are associated with at the AL.

Through learning, goal states can expand to include the sensor-

imotor states that brought about the change in drive and

valence forming a multi-modal construct. Goal states, as ter-

mination points of acquired behavioural procedures, together

with the behavioural sequence itself exert direct control over

how decision-making and action selection is performed.

DAC proposes a four-factor decision-making model that

uses: perceptual evidence, memory chaining, the predicted dis-

tance to the goal state, or goal fidelity, and the expected

value. This four-factor decision-making model of CL predicts

that decision-making will display both goal and behavioural

procedure fidelity [33,34]. This means that potential actions

are weighted both with respect to their distance to the current

goal state as measured in the number of events between the

memory element and the occurrence of the goal state, and

whether they form part of an active behavioural sequence,

where active sequences are triggered through perceptual evi-

dence and memory priming processes. This expansion of the

decision-making towards goals frees the agent from acting in

the restricted temporal window of the AL, its egocentric

frame of reference and its dependence on immediate sensory

states. Rather, memory allows for the organization of behav-

iour along allocentric coordinates, prospection and symbolic

representations that do not depend on available sensory

states. This transition towards allocentric goal-oriented navi-

gation leads to robust robot multi-modal (proximity sensors,
chemosensing and vision) foraging including recovery from

kidnapping and noise [35] and optimal maze navigation in

the presence of distracters [36]. These robot experiments

with DAC show that the ability to navigate using allocentric

coordinates is closely coupled with the use of goals and goal

fidelity. Moreover, the notion of goal fidelity suggests that

goals cannot be seen as single scalar values that act as discrete

organizers of action (e.g. in the form of a single reward

signal), but are defined through the confluence of congruent

sensory, motor and value information at the termination

points of behavioural sequences, i.e. the sequences formed

in LTM. These goal states also exert an implicit influence on

decision-making by defining a goal-dependent metric that

measures the relevance of specific memory elements to the

current task (i.e. goal fidelity). When action depends solely

on perceptual evidence and egocentric representations, any

variation of these input states (due to occlusions, noise,

movement-induced variation, etc.) translates into variability

in action selection leading to a nonlinear amplification of be-

havioural variability and thus the deviation from previously

executed and acquired trajectories. This so-called behavioural
entropy precludes the agent from reusing acquired egocentri-

cally represented behavioural plans because predicted

sensory states will not match encountered ones. To demon-

strate how allocentric goal-oriented behaviour enhances

fitness by overcoming behavioural entropy, experiments

were performed where egocentric action encoding was com-

pared with an allocentrically defined movement vector that

points from the current position of the agent to the location

of a next landmark, i.e. allocentric goal-based action [37,38].

Using a range of maze learning benchmarks, it was shown

how this approach leads to robust maze navigation and learn-

ing even when significant noise is applied to the motor

output [33]. This study also illustrates the relationship

between taxon versus route navigation strategies [39] in a

robotic system. The reactive egocentric control system can

fulfil the agent’s needs when the information from the goal

site can be directly detected, there is a direct path between

current and goal positions (taxon-based strategy) and

approaching it does not conflict with any other behaviour

system. However, when a taxon-based strategy fails or rel-

evant landmarks cannot be detected, the contextual control

system is required to generate a route using an allocentric

navigation method relying on acquired goal states. On the

basis of these observations, DAC predicts that AL is focused

on real-time egocentric interaction with the world emphasiz-

ing interval timing, while CL abstracts its processing towards

symbolic events and their order supporting allocentric

interaction with a task.

The self-model of the CL includes monitoring and auto-

biographical memory systems. The former prevents the

consolidation of behavioural sequences that are not causally

related to goal achievement defining an agency condition

for CL memory formation. The later is an episodic memory

system that memorizes self-generated goal-oriented beha-

viours and its context and centres on the self and its agency

as opposed to the task and the world in which it is realized.

In summary, the DAC theory introduced proposes that

the elements of H4W are processed at each layer of the neur-

axis organized along World (What, Where, When), Self

(Why) and Action (When, Where, How). Here, ‘Where’ and

‘When’ appear twice to emphasize the distinction between

Self and external objects. As we advance along this hierarchy,

http://rstb.royalsocietypublishing.org/


Figure 2. Proposed brain architecture representing the neuronal substrate of goal-directed behaviour and its relation to the neurorobotic DAC architecture. The
hippocampal formation is proposed to code the organism’s world state space (red), the prefrontal cortex (especially its medial and orbitofrontal aspects) to represent
task space (i.e. rules, constraints, goals and values of cues and action options, purple) and the striatum (and downstream structures of the basal ganglia) to mediate
action selection. In this scheme, the hypothalamus and brain stem contain sensor systems monitoring homeostatic variables and providing information about the
motivational needs of the organism that define the pursuit of needs and goals (blue). The arrow from striatum to thalamus represents an indirect projection. The
hypothalamic efferents are modelled after those traced for the lateral hypothalamus in relation to feeding behaviour and do not apply to hypothalamic areas in
general. For the sake of clarity, the scheme’s anatomic connections are by no means complete. For instance, outputs from prefrontal cortex and basal ganglia to the
brain stem, or several afferent inputs to amygdala and VTA, have not been included, while several hypothalamic nuclei project directly to ventromedial prefrontal
areas. Sensory inputs reach the hippocampus via intermediate stations ( parahippocampal areas; not shown) and are supplemented with frontal cortical inputs
converging on these intermediate areas. Furthermore, the motor cortices are meant to include premotor, supplementary motor and frontal oculomotor areas
(based on [40 – 42]).
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the agent becomes less dependent on immediate states of the

world and relies more on memory increasingly constrained

by states of self, from needs to values to goals, in an expanding

spatio-temporal horizon. In this hierarchy, the RL need-

reduction systems define the value systems of the AL, which

in turn constrain the behavioural plans formed by the CL. By

combining need reduction and value with the sensori-

motor states of the task at hand, goals emerge as CL-based

representations of termination points of acquired behavioural

procedures that can operate in an allocentric frame of reference

freeing the agent from the here-and-now and propelling it

towards a goal-oriented future.
2. The neurobiology of drives and goals
according to the H4W-DAC taxonomy

The H4W taxonomy and its realization in the DAC architecture

suggest a three-level organization of the central nervous

system. Below we discuss how each of these three levels of

organization is neurally implemented in the mammalian

brain, reviewing mainly rodent research (figure 2).

(a) Reactive layer: neural mechanisms encoding drives
in relation to survival and reproduction

Perhaps the most well-known brain region for controlling

motivational drives is the hypothalamus, a phylogenetically

ancient, diencephalic structure well connected to sensor and

actuator systems in lower CNS centres such as the brain
stem, spinal cord and autonomic ganglia. For goal-directed

behaviour, both the sensor and effector functions of the hypo-

thalamus are critical. For instance, the preoptic area contains

thermosensitive neurons that, at the same time, are involved

in the generation and dissipation of body heat [43]. The

supraoptic nucleus harbours cells that gauge the osmola-

lity of blood plasma [44], and at the same time this nucleus

maintains homeostasis of blood salt levels. Similarly, hypo-

thalamic cell groups are thought to monitor nutrient levels

and guard the body’s energy balance, while others regulate

sexual, maternal and aggressive behaviour as well as sleep

(e.g. [45–49]). This list of hypothalamic sensor–actuator func-

tions is by no means exhaustive and can be supplemented

with numerous brain stem-medulla nuclei that are often posi-

tioned even closer to internal sensors and effectors (e.g. the

monitoring and regulation of food intake, respiratory and car-

diovascular reflexes by the nucleus tractus solitarius, vagal

nuclei and connected cell groups). In addition, these functions

address not only homeostatic regulation, but also allostasis,

referring especially to responses to challenges that require

system-wide, dynamic adaptation and predictive regulation

in anticipation of upcoming homeostatic disturbances [17,18].

For goal-directed behaviour, a first point to note is that

drives and their associated behavioural expression, such as

aggression, thirst, hunger, sex, sleep and safety, are determined

in basic form at the level of the hypothalamus together with

lower-order structures [50], analogous to the functioning of

the RL in DAC. A drive arises from the discrepancy between

a read-out of a homeostatic parameter (e.g. blood sugar level)

and an optimal set point, although for some types of drives
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the neural basis underlying this comparison is not that clear yet

(e.g. for ‘sleep pressure’, e.g. [18,51]). Second, a definition of

drive purely in terms of internal homeostasis would be too lim-

ited. For instance, organisms will explore novel environments

and objects even if they thereby leave their shelter and decrease

their own safety level, while no explicit reward is ensured. It is

still largely unknown how such a drive for novel information

or exploration (or reduction of uncertainty [52–55]) would

be realized by the brain, although some higher-level control

systems have been implicated (e.g. prefrontal cortex and hippo-

campus; see below). In addition, the question is whether we

need to distinguish different levels of drives from ‘basic and

innate’ to ‘derived and acquired’ arranged in a hierarchical

fashion, with the associated question of how many of such

drives must be identified. It is especially with an eye to

optimizing the dynamic equilibrium between the multiple

competing needs of the organism and the dynamics of its

environment that the notion of allostasis has been proposed.

Third, our relatively advanced knowledge of homeostatic

‘reflexes’ (i.e. automated sensor–effector reactions to specific

disturbances of homeostatic equilibria) has done little to

inform us about mechanisms to prioritize particular drives

over others. For instance, if an animal is hungry, thirsty and

exhausted at the same time, it is less than clear how the brain

prioritizes a particular drive as being targeted for satisfaction

and deals with conflict resolution. A chosen priority will not

only depend on the strength of the drive but also on the context

of available options, confidence in available solutions, etc.

prompting the organism to estimate how likely a goal (e.g.

quenching of thirst) can be achieved given the environment

and its affordances (dry or rainy). The DAC architecture

solves this challenge relying on allostatic control in the service

of need reduction (figure 1).

Returning to the notion of different levels for organizing

goal-directed behaviour, we will review evidence implying

higher brain structures in the neural implementation of

what we have described as its core characteristic: the prospec-

tive evaluation of possible state (situation) and action outcomes
rather than fixed stimulus–response rules. As mentioned in

the Introduction, goal-directedness implies that the organism

has implicit or explicit knowledge about its actions being

causal in the chain of events leading to the desired goal,

i.e. agency. Furthermore, if the value/utility of a goal

changes, for instance because of a change in motivational

state, the organism should refrain from persistently conduct-

ing a fixed stimulus–response sequence or habit, but must

adjust its response according to the change in value [7].

Given this definition of goal-directedness and the limitations

of hypothalamic-brain stem systems in this respect owing to

their reliance on fixed action patterns, there is a need for

‘higher’ systems to be informed about drives expressed by

these ‘lower’ reactive levels. This upward projection of the

drive state implements a reactive-to-adaptive, flexible type

of organization that grounds the affective component

of goals and can be realized, among others, through hypo-

thalamic projections to the thalamus, prefrontal cortex,

hippocampus and related structures [41].

(b) State representations conducive to goal-directed
behaviour: hippocampus

Currently, it is becoming clearer that, when an animal is

strongly committed to obtaining a particular goal, information
processing in many brain areas is simultaneously affected by

inputs that are predictive of, or conducive to, this goal. This

effect is more widespread and pervasive than could be cap-

tured by the simplification that ‘reward centres’ in the brain

are activated. Even structures such as posterior parietal

cortex and primary sensory cortex (A1, V1) are deeply affected

by associative stimulus–reward and action–reward learning

[56–62]. Despite this ubiquity, there are good arguments to

highlight the roles of hippocampal-prefrontal systems in form-

ing state representations that can be used by action selection

systems executing goal-directed behaviour. Put succinctly,

when the needs of an agent (‘Why’) have been set at the level

of the hypothalamus and brain stem, representations of the

state of the world (including the agent’s own state) are required

to determine where and when this need may be satisfied, and

through which particular object (‘What’) within a feasible

spatio-temporal range (e.g. an apple to satisfy the need for

particular nutrients).

Over the past decades, two classical views of the hippocam-

pal system have been elaborated, both of which are currently in

need of updating with respect to goal-directed behaviour. The

first view holds that the hippocampus codes an agent’s position

in space, as inspired by the Cognitive Map theory of Tolman

[63] as well as the body of place-cell research initiated by

O’Keefe & Dostrovsky [64]. The second notion accounts for hip-

pocampal function as a ‘recorder’ of experience—an organ for

the formation of episodic memories that would be transferred,

with the passage of time, to neocortical sites where also gener-

alization (semanticization) of memory may take place [65]. The

update required on the first view is that a large body of recent

research indicates that the hippocampus codes not only for an

agent’s self-location, but also for specific objects and events—

e.g. neutral environmental cues such as odours, and cues that

predict reward, as well as the time spent in a situation condu-

cive to goal pursuit [66–70]. Moreover, the representation of

the task seems to follow a multiplexing of input streams com-

bining sensory, location and action information at both the

input and memory stages of hippocampal processing wood

[66,71–73]. This latter observation is in line with a prediction

from the DAC theory, viz. that goal-oriented behaviour is con-

structed from conjunctive sensorimotor couplets (figure 1).

If true, this would mean that modulation of sensory cues

should lead to a significant change in the population response

of hippocampal neurons [74]. This effect was indeed directly

observed in, so-called, rate remapping in environments that

were morphed [75] and abolished when sensory cues to the

hippocampus are removed [76].

The update on the second notion of the recording of

experience is that the hippocampus has turned out not only

to record (i.e. encode and store) spatial experiences, but

also—and more generally—chains of associated events

and sequences of motor actions [77–79]. Indeed, the DAC

theory predicts that sensorimotor couplets are constructed

and combined into sequential representations in STM. The

hippocampus seems to display both sensory and motor fea-

tures. How these chains are formed is unknown, but in the

case of motor sequences the information is hypothesized to

reach the hippocampus via thalamocortical sensory systems

(e.g. somatosensory, proprioceptive and vestibular), where

novel information can be associated with retrieved memories

to expand these into longer chains. Importantly, the hippo-

campus appears only to be required for longer, or more

complex, sequences as more simple stimulus–response
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associations (and ensuing habits) can be acquired via the

dorsal striatal system [80,81].

In addition to storing information, the hippocampus is able

to retrieve previously stored information and to self-generate

internal sequences of cell activity that are subsequently used

to map novel environments or situations [82–84]. Self-initiated

retrieval is thought to take place as ‘replay’ mainly occurring

during hippocampal local-field potential (LFP) events called

sharp-wave ripples [85–88], but also during bouts of LFP

theta-band activity during running and other ongoing behav-

iour, resulting in ‘forward sweeps’ of hippocampal place

representations ahead of the animal, at choice points in the

environment [89]. Thus, during ongoing goal-directed behav-

iour, as well as ‘off-line’, the hippocampus has multiple

modes to (re-)generate and recall information from memory,

which can be flexibly used to guide decision-making and/or

support consolidation [90,91].

The upshot of these recently emerging insights is to regard

the hippocampal system in a broader sense than was hitherto

the case, namely as a system for representing the current

state of the world including the agent’s, incorporating many

types of causal and/or non-causal spatio-temporal relation-

ships. The hippocampus is not passively storing episodic

memories but rather actively storing information (based on

synaptic plasticity) and retrieving information (by way of

replay and theta-sequenced firing), where the switch between

these two modes can be rapidly and flexibly made, depend-

ing on the current needs of the organism, e.g. in planning its

behaviour or in consolidating previous experiences. Overall,

the strong confluence of sensory thalamocortical information

onto the hippocampus—as contrasted with frontal motor

information which reaches it more indirectly—emphasizes

that this structure is more concerned with the representation of

current states of the environment and the organism, and their

multisensory derivatives such as place (Where) and time

(When), then being confined to the representation of an

action or task space per se. However, the inputs to the hippo-

campus from the grid cells of the medial entorhinal cortex

can be interpreted as representing heading direction and

thus action, a source of information that in turn strongly

dominates memory dynamics [72]. Having said this, the

hippocampus engages as well in the representation of goal

sites, and these behaviourally significant states are probably

encoded with greater density and/or spatial resolution than

neutral locations [68,90,92]. These goal sites play an important

role in goal-directed choice but according to DAC, they need

to be complemented with other information to solve the full

H4W problem, and most importantly sequenced rule-based

goal-oriented plans for action generated at the level of the CL.

(c) Task representations conducive to goal-directed
behaviour: prefrontal cortex

Leaving aspects of prefrontal functions in the cognitive control

over memory processes in primates aside, there is accumulat-

ing evidence to cast prefrontal functions as controlling goal-

directed behaviour (e.g. [93]). Whereas the hippocampus is

proposed to engage in world state representations, the pre-

frontal cortex is more concerned with task- and action-space

representations. Neurophysiological studies in rodents and

primates indicate that prefrontal neurons can encode task

rules that need to be followed to obtain a goal [94], individual

actions or chunks of actions leading up to a goal [95–97], and
goals and goal sites themselves [98,99]. Importantly, orbito-

frontal and medial prefrontal-anterior cingulate neurons are

sensitive to the motivational value of cues [100–104] and

actions associated with goal pursuit [105,106]. Lesion studies

have confirmed a causal involvement of prefrontal structures

in representing goals and task rules, implying orbitofron-

tal cortex in reversal learning and medial prefrontal cortex

in both extra-dimensional shifting [107,108] and learning

action–outcome relationships [7,109]. Thus, whereas the hip-

pocampus is proposed to represent objects and events

relevant for pursuing a goal in space and time (What, When

and Where), the prefrontal cortex appears better equipped to

represent a task space, i.e. the set of rules, constraints, goals

and goal-predictive values of cues and actions available as

options to pursue goals (How) (cf. [110]). In this context, the

amygdaloid complex should be included as part of a larger net-

work for affectively driven goal-directed behaviour not only

mediating value based Pavlovian response behaviours, but

should also be goal-oriented instrumental behaviours which

can be invigorated by Pavlovian cues [111,112].

The dominant paradigm to investigate goal-oriented

decision-making emphasizes the role of the integration of

perceptual evidence in terms of the firing rate given a very

limited set of actions [113]. Experiments with the CL of

DAC listed above (figure 1) showed that this is a rather

restricted perspective because also factors such as memory,

value and goals must be considered [57]. DAC theory thus

suggests that numerous goals and behavioural procedures

can be considered in any given task in a state-dependent

fashion. This raises the question of how prefrontal cortex

could keep track of this variable set of goal-oriented actions

and procedures. A detailed study of the neuronal dynamics

of the premotor cortex of the macaque monkey during a

countermanding task has shown that the inter trial variability

of the neuronal response to the movement cue is directly pro-

portional to the errors the animal has committed (i.e. task

memory) and fully predicts performance, i.e. error rate and

reaction time rather than firing rate [114]. This suggests

that, dependent on task memory or confidence, the neuronal

dynamics allows more or less action options to compete for

control and that monitoring systems regulate this process

by biasing the competition between these options. This

raises the question what the neural substrate is that forces a

goal relevant decision among the available response options

represented in this task space.

(d) Outcome predictions and action selection
mechanisms in the basal ganglia

DAC proposes that optimal decision-making depends on

the integration across perceptual evidence, memory biases,

values and goals [3]. Hence, the question is where in the brain

such a comparison and selection could take place. The striatum

(i.e. caudate-putamen and nucleus accumbens) is the main reci-

pient of prefrontal output and is organized in different sectors,

topographically laid out as a dorsolateral sector (receiving

primarily sensorimotor inputs), dorsomedial sector (mainly

anterior cingulate and prelimbic inputs), a ventrolateral sector

(the ‘core’ of nucleus accumbens; mainly amygdaloid, prelimbic

and dorsal hippocampal input) and a ventromedial sector

(‘shell’; mainly prelimbic, infralimbic and ventral hippocampal

input [115]). An essential organizational feature of the basal

ganglia is the grouping of topographical projections in parallel
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‘loops’, starting in a particular cortical area and, from there,

projecting to specific striatal sectors, external segment of the

globus pallidus/pallidum and output structures such as the

substantia nigra reticulata [116]. By themselves, these loops

do not illuminate a specific mechanism for selecting among

available response options. However, striatal principal cells

are connected via GABAergic recurrent collaterals, providing

a potential mechanism for competitive selection [117,118].

Furthermore, the basal ganglia possesses a funnel-like structure

in the sense that the downstream flow of processing in

cortico-basal ganglia loops is compressed into lesser and

lesser neurons. This structure may provide further competition

mechanisms operating at, or in interaction with, the output

levels such as substantia nigra reticulata and the internal

segment of the globus pallidus [119].

By itself, the presence of GABAergic, inhibitory interactions

would suggest an inflexible, learning-insensitive competition

mechanism in the striatum. By contrast, recording and

pharmacological studies indicate an active role of the basal

ganglia in learning goal-directed behaviours. Building on pre-

vious models that framed the basal ganglia as an actor–critic

architecture for (model-free) reinforcement learning [120,121],

we recently argued that especially the ‘Critic’ (goal-predictive)

function of the striatum is well supported by the data, whereas

its implementation of the ‘Actor’ component is much less clear

[9]. This deviation from a classic actor–critic scheme is based

on the widespread support for reward-predictive components

of cue-, action- and place-related neural coding in multiple

striatal sectors (in agreement with a Critic function), whereas

clear evidence for a construction in which a ‘Critic’ instructs

a separate ‘Actor’ structure within the same basal ganglia is

lacking [9]. When surveying the various striatal sectors, it

is striking to note that striatal functions in goal prediction

(usually described as ‘reward expectancy’ in animal exper-

iments) can be attributed to all sectors, but based on domains

of afferent information differing per sector. The dorsomedial

striatum, for instance, has been implied in action-outcome

learning [122], whereas the ventral striatal core functions in

cue-outcome learning, in conjunction with its strong amygda-

loid input [9,123]. By contrast, the shell of the nucleus

accumbens has been implied in place-outcome learning [124].

In this scheme, the dorsolateral striatum might seem to be

the ‘odd one out’ in this company, as it has been implied

in habit formation and sensorimotor learning with minor or

no dependence on motivational outcome. However, its role

can in fact be very well accommodated if the ‘outcome’ is

viewed more broadly: outcome can also be constituted by

action, so that cue-action (or: stimulus–response) learning

is subsumed under an overall basal ganglia architecture for

‘input–outcome’ learning. In conclusion, the anatomical

architecture, internal wiring and information resources in

afferent structures place the basal ganglia in an eminently

suitable position to, first, code state–outcome relationships

(where ‘state’ can be stimulus, place or action) and, second,

to use this associatively learned information to force an

expected outcome-dependent decision among response

options represented in task space.

Outcomes (in a broad sense) of situations and actions need to

be compared against predictions. The best-known candidate

for expressing such as comparison—at least in the domain of

reward and appetitive learning—is the reward-prediction-error

mechanism that may be implemented by mesodiencephalic

dopaminergic neurons projecting to striatum and prefrontal
cortex [125], while the habenula has been implied in aversive

learning [126]. This type of error is, however, low dimensional

in nature and limited to cached value (‘I got less/more than

expected’). Error signals incorporating model-based, high-

dimensional information (‘I got a banana instead of the apple I

expected, but they are worth the same’) may involve cortical sys-

tems such as the anterior cingulate and orbitofrontal cortex,

but also striatal regions [9,127,128] (see [31] for a more detailed

computational analysis of model-based versus model-free

reward signals).

It is worth noting that, in a highly adaptive agent capable

of planning, world and task space representations will not be

static, or merely ‘slowly evolving’ as the agent moves along in

search of its goals. The self-generated time-compressed replay

and forward-sweeping events found in the hippocampus

illustrate how past and future trajectories can be rapidly

retrieved and flexibly used for planning (cf. [88,90]). These

hippocampal replay events are likely to impact on the ventral

striatum, where replay events have been shown to occur in

succession to place-cell replay in the hippocampus [85,87].

During hippocampal forward sweeps, ventral striatal neur-

ons code covert reward expectations, while orbitofrontal

neurons code expected outcome at alternative sites that had

not been selected for visiting [129,130]. Thus, especially the

orbitofrontal cortex may not only provide model-based infor-

mation on cue/object value before choices are made

[102,103,131], but also engage in post-decisional evaluation

and ‘looking back’ on previous decisions. How hippocampal

events are precisely linked to prefrontal processing is less

clear yet, but the medial prefrontal cortex does exhibit

replay, and its activity coheres with hippocampal theta

activity [132,133].

In conclusion, the framework emerging from systems

and behavioural neuroscience is that goal-directed behaviour

is mediated by a network of highly interconnected brain

structures which directly implement H4W: (i) the hypothala-

mic-brain stem system functions as a key node for signalling

homeostatic needs and drives grounding the ‘Why’ of goal-

directed action; (ii) the hippocampus encodes episodic state

representations configured in space and time, which can be

rapidly retrieved online to inform and instruct decision-

making systems supporting integrated representations of

‘What’, ‘When’ and ‘Where’; (iii) the prefrontal cortex

encodes task space representations, comprising choice

options, rules, goals, values of cues and actions relevant to

obtaining the goal, and using among others information

from the hippocampus and amygdala to shape these rep-

resentations based on situational relevance and prior

experience shaping defining potential candidates for the

‘How’ of action; and (iv) the basal ganglia impose a selection

mechanism, including reward/punishment predictions as

weighting factors, on the manifold options represented in

frontal motor cortical structures further biasing decision-

making towards the dominant goal and action defining

how a goal can be achieved through a specific action. These

systems map to components and processes of the DAC archi-

tecture: it initially deals with homeostatic needs using a

reactive system but successively acquires new state and task

representations as well as a new behavioural repertoire in

the adaptive and CLs, which compete for selection. It is the

combined contribution of elements at all these levels rather

than a monolithic architectural component that realizes

goal-directed behaviour.
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3. Conclusion
In this article, we identified the central questions of goal-

directed choice as ‘Why do I act? What do I need? Where

and When can this be obtained, and How do I get it?’ We

have analysed this H4W problem from the perspective of a

system-level architecture by mapping the H4W objectives

onto the DAC theory of mind and brain. Neuroscience and

neuroeconomics have often benefited from a close linkage

to computational methods but these often abstract from

many details of situated action (e.g. model-based reinforce-

ment learning theories [134,135] and several contributions

to this special issue). By contrast, we addressed goal-directed

choice from the viewpoint of a biomimetic cognitive architec-

ture that also considers the embodied and situated aspects of

the choice situation. From this perspective, the brain is a con-

trol system and its primary task is to support adaptive action

in the real world rather than optimally solving abstract pro-

blems detached from perception and action. Subsequently,

following the DAC framework, we proposed that the mam-

malian brain solves the H4W problem by integrating central

representations of needs and drives (e.g hypothalamus),

valence (e.g. amygdala), world and self-state spaces (e.g. neo-

cortex and hippocampus), task space (e.g. prefrontal cortex)

and multi-modal selection (e.g. basal ganglia) on the basis

of multiple kinds of outcome predictions. Goal-directed

choice thus results from the coherent orchestration of mul-

tiple mechanisms within a system-level architecture. That

this interpretation is a reasonable approximation of the neur-

onal substrate of goal-oriented choice is made plausible by

the fact that an existence proof of this architectural hypothesis

is provided through robot-based experimentation using

DAC. The DAC case studies we presented thus also illustrate

how biomimetic architectures instantiated in robots can be

used to explain neuronal processes and formulate predictions

that bridge the gap between real-world robot behaviour and

neuronal data [136].

From the DAC perspective, it can be appreciated that

goal-directed selection is multilevel; it involves multiple mech-

anisms that represent information of different qualities (e.g.

sensory, memory and different aspects of H4W) at different

layers and engage in interactions that have to be coherently

orchestrated. The DAC approach can shed light on how

more complex goal-directed strategies develop on top of

innate reactive control systems, too. At the lowest level,

simple representations of valued states (linked to homeostatic

variables) might be initially available that trigger stereo-

typed appetitive or aversive behaviours (e.g. following a

sugar gradient in aqueous solution). These behaviours are

not goal-directed because they lack key ingredients such as

knowledge of causal efficacy of actions and guidance of

actions using goal representation. However, they can serve

to bootstrap the valuation of states of the external world

(e.g. apples have value), the acquisition of goal represen-

tations at higher hierarchical levels (e.g. consumption of an

apple) and associated goal-directed control strategies (e.g.

reaching a specific place and climbing a ladder to obtain

the apple). For example, the AL of DAC shows how during

learning, Pavlovian mechanisms permit to ‘transfer’ value

to novel states, e.g. visual stimuli and spatial representations

that can be successively selected as goals. The CL of DAC

models how state-action sequences that lead to reinforce-

ment can be stored and increasingly support more complex
goal-directed strategies [25,27]. DAC does provide expla-
nations for behaviours such as observed in classical

conditioning, navigation and foraging, has made testable

and tested predictions on the underlying neuronal substrate

and, in addition, has been generalized to the control of robotic

systems. These are three key criteria of a scientific theory that

should be set as the benchmarks for any theory of mind and

brain. With respect to the neuronal substrate of goal-directed

choice and its decomposition into the H4W problem, an initial

mapping of the DAC taxonomy to the brain would lead to

the following system-level decomposition: hypothalamus,

central grey and other brain stem structures forming part of

the RL self system defining Why; the amygdala as an inter-

face between Why and What at the RL and AL level;

neocortex and hippocampus forming key systems of the AL

learning machinery establishing What, When and Where,

with the caveat that the timing of events is probably relatively

coarsely coded in hippocampus [69,70]; detailed timing of

When defined through the cerebellum at the level of AL;

rule-based task space construction that integrates What,

Where and Why at the level of the prefrontal cortex; while

the competitive processes of the basal ganglia ultimately

orchestrate the How of goal-oriented action. This decompo-

sition confirms the DAC prediction that AL systems are

more closely linked to interval based real-time processing,

while those of the CL are more dominated by order.

The mapping of H4W to the brain and DAC shows that

goals can be seen as emerging from the foundational need sys-

tems of the physically instantiated agent. However, through

the state space learning systems of the AL and the task learn-

ing systems of the CL, these goals become incrementally more

abstracted from their homeostatic origins (see also [137,138]).

Rather they are defined as models of states of the agent and

the world that define the measurable ends of successful

behavioural strategies. Hence, what we call ‘goals’ are amal-

gamations of sensory, affective and action states, stored in

different memory systems and defined on the basis of the

interaction of the agent with its varying and often conflicting

needs with its dynamic environment. This incremental abstrac-

tion from needs to goals serves the transition from action in

environments with continuously available sensory information

that support taxon-based strategies, to tasks that depend on

discontinuous and unpredictable environments with intermit-

tent feedback. The latter case can vary from maze navigation

to solving complex logical puzzles [34,139]. The predictions

of this model are that any representation of sensory-affect-

action states (or the DAC triad of world, self, action) that can

be part of frontal cortical WM systems can become tagged as

a goal state, i.e. a state at which a behavioural sequence termi-

nates. These representations can in turn affect processing at

any level of the DAC hierarchy through their ability to drive

valence via specific modulatory and feedback circuits. One

example would be the ability to drive the inferior olive

through projections from frontal areas in this way defining

the teaching signals that control plasticity at the level of the

cerebellar cortex and thus its goal-based learning capabilities

(e.g. [32]). This implies that goal states as defined in these

terms are either explicitly tagged in order to play this role or

are detected in online processing. Future work has to shed

more light on this prediction.

Our analysis of goal-oriented choice, combining a neuro-

biological perspective with the DAC theory, exemplifies

how neurorobotic and experimental methods can work
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hand-in-hand. As the biologically grounded model constitu-

tes an integrated architectural solution to problems of goal-

directed choice and pursuit, it can help studying the sys-
tems-level neurobiology of goal-directedness rather than

focusing only on its components in isolation. A combined

neurophysiological and neurorobotic approach holds the

promise to simultaneously tackle the problem of goal-

directed choice at multiple levels [140–142]: (i) the func-

tional-behavioural level, e.g. how goals are selected and

realized in the real world based on their expected value

and the cost of achieving them; (ii) the mechanistic-

computational level, e.g. how action outcomes are computed

based on perception–action systems and how they are evalu-

ated on-the-fly based on limited information and resources;

(iii) the physiological level, e.g. how these computations are

implemented in neuronal structures, focusing in particular

on a system-level architecture formed by hypothalamus, hip-

pocampus, ventral striatum, medial prefrontal cortex and

amygdala; and (iv) ecology, e.g. how goal-directed abilities

can be learned and adapted in real-time and in a situated

environment, thus providing for a convergent multi-scale vali-

dation of theories of mind and brain. The alliance between

robotics and the empirical research on the brain is beneficial

for robotics, too. In developing robots endowed with goal-

directed behaviour, it has considerable advantage to base
them on the principles identified in biological behaviour,

because central nervous systems have evolved as highly

successful examples of efficient architectures enabling increas-

ingly more sophisticated perception, cognition and behaviour.

The more fundamental methodological question that the

approach we sketched addresses is what shape theories of

the brain will attain and how system-level questions of brain

and behaviour can be effectively pursued. We argue that

such answers will take the form of hybrid frameworks that

integrate neurobiological research, abstract and biologically

detailed computational models realized using biologically

grounded real-world artefacts.
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